• Title/Summary/Keyword: 하중진폭

Search Result 167, Processing Time 0.211 seconds

Analytical Study on the fatigue Behavior of Reinforced Concrete Bridge Piers under Earthquake (지진시 철근콘크리트 교각의 피로거동에 관한 해석적 연구)

  • 김태훈;이상철;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.389-396
    • /
    • 2001
  • This paper presents an analytical prediction of the fatigue behavior of reinforced concrete bridge piers under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for fatigue behavior of reinforced concrete bridge piers under earthquake will be verified by comparison with reliable experimental results.

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

Static and Dynamic Analysis for a Double Link Type Level Luffing Jib Crane (이중링크 형식 수평인입 집 크레인의 정적·동적 해석)

  • Moon, D.H.;Hur, C.W.
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.715-725
    • /
    • 2000
  • As a link composition of a double link type level luffing jib crane was determinated through the link composition design, the design to be considered will be computations of the luffing trajectory deviation at the fly jib tip and the required luffing device capacity. This paper is a study regarding the static and dynamic analysis for a mechanism of the crane. The objective of the static analysis is to determinate the capacity and the dimension of luffing device when the crane selfload, rated hoisting load, wind load and inertia force are applied on the crane. The objective of dynamic analysis is to compute the luffing trajectory deviation, velocity and inertia force due to luffing acceleration for each link. All analyses are performed by computer programs. The reliability of the program was checked by results from analyses of the related commercial package. It is expected that the productivity and reliability of the design can be improved by this program which can rapidly and exactly deal with static and dynamic analysis for a given link composition of the crane.

  • PDF

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.

Development of Laminated Blade Based Shock Absorber Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 적층형 블레이드 기반 충격저감장치)

  • Jae-Seop Choi;Yeon-Hyeok Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2023
  • Pyrotechnic separation devices have been widely used as holding and release mechanism for deployable appendage. However, pyro-shock can cause temporal or permanent damage on shock sensitive components such as electronics, mechanism, and brittle components. This study proposed a low-stiffness blade based passive shock absorber using a multi-layered stiffener laminated with viscoelastic acrylic tapes for reducing transmitted pyro-shock upon explosion of pyrotechnic separation devices. The multi-layered structure with viscoelastic tape has high-damping characteristics to effectively secure structural integrity of low-stiffness blades under the launch environment. The design effectiveness was verified through a shock test by dropping a pendulum. The structural integrity of the shock absorber under a launch environment was evaluated through structural analysis under load conditions with a deployable payload.

A Study on the Fatigue Strength Improvement of the Fillet Welded Connections with respect to Post-Weld Treatment (용접 후처리에 의한 필렛용접부의 피로강도 향상에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.665-672
    • /
    • 2008
  • In the study herein, the fatigue test was conducted on the fillet welds of the load carrying cruciform joint, which is frequently used in the steel structures such as bridges, ships, etc. In addition, the fatigue strength was analyzed with respect to the different post-weld treatment. The treatment methods used include Toe Grinding, TIG Dressing, and Weld Profiling. The fatigue test was under constant amplitude with repeated load for these test specimens. In the load carrying full penetration fillet welded joints, regardless the conduction of the post-weld treatment or not, they all secured the fatigue strength of category "F", which exceeds the fatigue design specifications of BS Code. In the comparison of the fatigue strength upon the post-weld treatment, the fatigue strength tends to increase according to the order: Toe Grinding, TIG Dressing, and Weld Profiling.

Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests (CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석)

  • Herrera, Diego;Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.65-75
    • /
    • 2024
  • This study investigates liquefaction-induced settlement through strain-controlled tests using a cyclic direct simple shear device on clean sand specimens. By focusing on the accumulated shear strain, soil density, sample preparation method, and cyclic waveshape, this study attempts to enhance the understanding of soil behavior under seismic loading and its further deformation. Results from tests conducted on remolded samples reveal insights into excess pore water pressure development and post-liquefaction volumetric strain behavior, with denser samples exhibiting lower volumetric strains than looser samples. Similarly, the correlation between the frequency and amplitude variations of the wave and volumetric strain highlights the importance of wave characteristics in soil response, with shear strain amplitude changes, varying the volumetric strain response after reconsolidation. In addition, samples prepared under moist conditions exhibit less volumetric strain than dry-reconstituted samples. Overall, the findings of this study are expected to contribute to predictive models to evaluate liquefaction-induced settlement.

The Experimental Study on the Effect of Track System on the Integral Behavior of Railway Bridge (궤도시스템이 철도교량의 정.동적거동에 미치는 영향에 관한 실험적 연구)

  • Sung, Deok-Yong;Park, Yong-Gul;Choi, Jung-Youl;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • Track system and periodic live load are characteristics of railway bridges. In the design and construction of railway bridge, periodic live load increases the importance of dynamic behavior. And It is well known that behavior of railway bridge may be affected by track system in real bridge. Through experimental study, static and dynamic behaviors were investigated. Deflection and stress due to bending moment were measured, the location of neutral axis of each section, natural frequency, damping ratio were analyzed for each three track systems - girder only, installed ballast track system and installed concrete slab track system. According to measured values for the each type of track system, concrete track system increases the stiffness of bridge by 50%, and ballast system does by 7%, dynamic responses of structure change linearly with the magnitude of load and location of neutral axis of each sections varies with each track system. Damping ratio is almost equal without and with track. Therefore, the effects of track system on the integral behaviors of railway bridge can not be ignored in the design of bridge, especially in the case of concrete slab track system. So study of the quantitative analysis method for effects of track system must be performed.

Investigation of the Vortex Shedding with the Spring Mounted Circular Cylinder (스프링장착 원통형 실린더를 이용한 와류발산현상 파악)

  • Lee, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.446-451
    • /
    • 2010
  • To investigate the vortex induced vibrations the 2-d.o.f. spring mounted circular cylinder was tested in the wind tunnel. The circular cylinder was designed to have the translational and the rotational mode uncoupled to each other. During the wind tunnel tests the resonance behaviors of the translational and the rotational modes by the locking-on phenomena were observed. From the locking-on phenomena observed it is shown that the vortex shedding is correlated with the responses of the structures. And the forces generated by the vortex shedding are influenced by the amplitudes and the frequencies of the cylinders.