• Title/Summary/Keyword: 하중분석

Search Result 3,755, Processing Time 0.045 seconds

About Fatigue Load Conduct Analysis of Simplified Composite Deck (피로하중에 대한 초간편 강합성 바닥판의 거동 분석)

  • Lee, Sung-Yol;Yoon, Ki-Yong;Yi, Gyu-Sei;Kim, Sang-Seup
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.79.2-79.2
    • /
    • 2010
  • 실제 교량 바닥판의 거동은 반복하중에 의한 피로누적 손상에 의해 발생되므로 성능분석을 위해서는 피로 실험결과를 통한 구조거동 분석이 이루어져야 할 것이다. 이에 본 논문에서는 현재 개발 중인 초간편 강합성 바닥판의 피로성능을 파악하기 위해 일점 재하 방식으로 반복 하중을 재하 하였다. 실험체의 거동을 파악하기 위해 변위계를 설치하여 변위를 측정하였고 이 실험의 결과로 신형식 바닥판인 초간편 강합성 바닥판의 피로 파괴 양상을 알 수 있었으며 피로 곡선을 얻을 수 있었다. 하지만 바닥판의 파괴요인 중 외부 환경적 요인과 실제 차량 하중 이동을 모사한 윤하중 재하 시 피로 성능에 대한 연구가 추가로 이루어져야 할 것으로 판단된다.

  • PDF

Study on Dynamic Characteristics of Structure Approaches by Train Moving Loads (열차이동하중 작용시 구조물 접속부의 동적 거동특성 연구)

  • Eum, Ki Young;Kim, Young Ha;Kim, Jae Wang
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.298-304
    • /
    • 2013
  • This paper systematically analyzes the dynamic effects of structure approaches which are expected to have direct effects on train loads - according to the train's acceleration as the area under consideration is located in a section where acceleration of high speed railway vehicles and the train's operating speed happens. In addition, through an examination of the dynamic train loads, dynamic behavioral characteristics of embedded structures and structure approaches were analyzed and a numerical analysis has been carried out in order to evaluate the performance of track subgrade and the safety of the structure. As a result, we reach the conclusion that the dynamic effects by train loads is low, but somewhat high vertical acceleration occurs.

Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges (곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구)

  • Kim, Sang Hyo;Cho, Kwang Il;Park, Byung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.955-963
    • /
    • 2006
  • As the geometrical characteristic of the curved bridge, the seismic response of curved bridges are different from straight bridges. This study analyzed the seismic response of the curved bridges considering diverse factors such as radius of curvature, direction of seismic load and support condition. The improved simple modeling of the curved bridge for seismic analysis is proposed, and it is compared with the detail modeling in order to verify the simple modeling. Three simply supported curved bridges and six 3-span continuous bridges are selected for seismic analysis. The behavior of curved bridges are evaluated in terms of the displacement and the force at supports and piers under seismic load applied in various directions. The results of this study show that upward reaction force may appear in simply supported curved bridge under seismic load. And continuous curved bridges are affected by the direction of the seismic load.

Comparison of Wind Load Provisions Based on the Wind Buckling Behaviors of Plant Tank (플랜트 탱크의 좌굴 거동에 근거한 풍하중 설계기준 비교 연구)

  • Bae, Doobyong;Park, Il Gyu;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • There are no consistent wind load provisions to design the plant tank in Korea. To suggest the appropriate design wind load, five kinds of specifications including KS B 6283, API 650, ASCE 7-10, EN 1991-1-4 are compared. To evaluate the adequacy of wind load specification in each code first, pressure coefficients were calculated in each code and compared with the results of wind tunnel test. Finite element analyses using linear bifurcation analysis were performed with the parameter of h/d and f/d (h : height of cylinderical part of tank, f : roof heigh, d : diameter of tank). By analyzing the results, appropriate wind load criteria which reflects the real wind actions and easy to apply will be suggested.

매립지 원지반 침하량 역산에 의한 기초 압축 특성 연구

  • 김용인;현근일;박정용;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.399-403
    • /
    • 2003
  • 해안의 연약지반에 건설되는 폐기물 매립지는 매립지의 안정성 평가를 위하여 하부기초지반의 침하거동 특성에 대한 분석이 필요하다. 본 연구에서는 현장 침하계측자료를 이용하여 현장 간극비와 현장 압축지수를 역산하여 그 특성을 분석하였다. 그 결과 매립초기에는 상부하중에 의한 유효응력증가가 미소하여 하부기초지반은 과압밀 특성을 나타내고 현장 압축지수 변화가 미소하였으나, 매립이 진행될수록 상부하중이 선행압밀하중을 초과하여 정규압밀영역으로 변화함에 따라 큰 폭의 증가를 보였다.

  • PDF

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.

A Study on the Fracture Cause of Dropper Wire in Catenary System for Korea High Speed Railway (고속철도 전차선로 드롭퍼 와이어 파단원인 연구)

  • Lee, Tae-Hoon;Jeon, Yong-Joo;Lee, See-Bin;Choi, Kyoung-Il;Han, Sang-Gil;Park, Young-Sik;Park, Ki-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1205_1206
    • /
    • 2009
  • 고속철도 전차선로에 설치된 드롭퍼의 와이어가 파단되어 원인을 분석하기 위해 드롭퍼의 구간별/설치위치별/지역별 단선현황 분석, 파단면 SEM(Scanning Electron Microscope) 분석, 미세조직 분석 및 드롭퍼에 작용하는 정적하중을 계산하였다. 또한 고속철도 전차선로에서 드롭퍼의 정적 및 동적하중 측정과 분석을 통하여 드롭퍼의 피로하중 특성을 확인하였고, 지지점의 압상량을 측정 및 분석하였다.

  • PDF

Seismic Response of Spatial Structure Subjected to Multi-Support Earthquake Load (다중지점 지진하중을 고려한 대공간구조물의 지진응답 분석)

  • Kim, Gee Cheol;Kang, Joo Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response for seismic design of spatial structure. Keel arch structure is used as an example structure because it has primary characteristics of spatial structures. In case of spatial structures with different ground condition and time lag, multiple support excitation may be subjected to supports of a keel arch structure. In this study, the response of the keel arch structure under multiple support excitation and with time lag are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic responses of spatial structure under multiple support excitation are different from those of spatial structure under simple excitation. And the seismic response of spatial structure with time lag are different from those of spatial structure without time lag. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation and time lag because the spatial structure supports may be different and very long span. It is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation.

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

The Development of Fixing Equipment of the Unit Module Using the Probability Distribution of Transporting Load (운반하중의 확률분포를 활용한 유닛모듈 운반용 고정장치 개발)

  • Park, Nam-Cheon;Kim, Seok;Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4267-4275
    • /
    • 2015
  • Prefabricated houses are fabricated at the factory for approximately 60 to 80% of the entire construction process, and assembled in the field. In the process of transporting and lifting, internal and external finishes of the unit module are concerned about damages. The purpose of this study is to improve the fixing equipment by analyzing load behavior. The improved fixing equipment would minimize the deformation of internal and external finishes. In order to develop the improved fixing equipment, transporting load on the fixing equipment is analyzed using Monte Carlo simulations, and structural performance is verified by the non-linear finite element analysis. Statistical analysis shows load distribution of unit module is similar with extreme value distribution. Based on the statistical analysis and Monte Carlo simulation, the maximum transporting load is 28.9kN and 95% confidence interval of transporting load is -1.22kN to 9.5kN. The nonlinear structural analysis shows improved fixing equipment is not destructed to the limit load of 35.3kN and withstands the load-bearing in the 95% confidence interval of transporting load.