• Title/Summary/Keyword: 하중분산

Search Result 247, Processing Time 0.027 seconds

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration (수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구)

  • Goo, Bon-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.

Effect of attachments and palatal coverage of maxillary implant overdenture on stress distribution: a finite element analysis (상악 임플란트 피개의치에서 유지장치 종류와 구개 피개 유무에 따른 응력분포에 대한 유한요소분석)

  • Park, Jong-Hee;Wang, Yuan-Kun;Lee, Jeong-Jin;Park, Yeon-Hee;Seo, Jae-Min;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effect of attachments and palatal coverage on stress distribution in maxillary implant overdenture using finite element analysis. Materials and Methods: Four maxillary overdenture 3-D models with four implants placed in the anterior region were fabricated with computer-aided design. 1) Ball-F: Non-splinted ball attachment and full palatal coverage, 2) Ball-P: Non-splinted ball attachment and U-shaped partial palatal coverage, 3) Bar-F: Splinted milled bar attachment and full palatal coverage, 4) Bar-P: Splinted milled bar attachment and U-shaped partial palatal coverage. Stress distribution analysis was performed with ANSYS workbench 14. 100 N vertical load was applied at the right first molar unilaterally and maximum stress was calculated at the implant, peri-implant bone and mucosa. Results: The use of the ball attachment showed lower maximum stress on implant and peri-implant bone than the use of the milled bar attachment. But it showed contrary tendency in the mucosa. Regardless of attachment, full palatal coverage showed lower maximum stress on implant, peri-implant bone and mucosa. Conclusion: Within the limitation of this study, ball attachment improved stress distribution on implant and peri-implant bone rather than milled bar attachment in maxillary implant overdenture. Also, full palatal coverage is more favorable in stress distribution.

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

A STUDY OF THE STRESS DISTRIBUTION OF THE ABUTMENT AND SUPPORTING TISSUES ACCORDING TO THE SLOPES AND TYPES OF CHIDING FLAMES OF THE LAST ABUTMENT IN DISTAL EXTENSION REMOVABLE PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (국소의치 최후방 지대치 유도면의 기울기와 형태가 지대치 및 지지조직의 응력분산에 미치는 영향)

  • Kim, Yang-Kyo;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.581-596
    • /
    • 1999
  • The purpose of this study was to investigate the stress distribution of the abutment and sup-porting tissues according to the slopes and types of the guiding plane of distal extension removable partial dentures. The 3-dimensional finite element method was used and the finite element models were prepared as follows. Model I : Kratochvil type guiding plane with $90^{\circ}$ to residual ridge Model II : Kratochvil type guiding plane with $95^{\circ}$ to residual ridge Model III : Kratochvil type guiding plane with $100^{\circ}$ to residual ridge Model IV : Krol type guiding plane with $90^{\circ}$ to residual ridge Distal extension partial denture which right mandibular first and second molar were lost was used and the second premolar was prepared as primary abutment with RPI type retainer. Then 150N of compressive force was applied to central fossae of the first and second molars and von Mises stress and displacement were measured. The results were as follows 1. Model I and Model IV showed a similar stress distribution pattern and the stress was concentrated on the apex of the root of the abutment. 2. The stress was increased and concentrated on mesial side of the root of the abutment in Model II. The stress was concentrated on buccal and mesiobuccal side of the root of the abutment in Model IV. 3. In Model I, the root of the abutment displaced and twisted a little in clockwise. In Model IV, the root of the abutment displaced to distolingually at apical region of the root and mesiobuccally at cervical region of the root. 4. In Model II, the root of the abutment displaced to mesiolingually at apical region of the root and more displaced and twisted in counterclockwise at cervical region of the root. In Model III, the root of the abutment displaced to mesiobucally at apical region of the root and more displaced and twisted in clockwise at cervical region of the root.

  • PDF

Effects of Phenolic and Phosphite Antioxidants on the properties for PC/ABS Blends during High-Shear-Rate Processing (고속 전단 가공에서 페놀계와 인산계 산화방지제에 의한 PC/ABS 블렌드의 물성 변화 연구)

  • Lee, Han Ki;Kim, Seon Hong;Lee, Hyung Il;Yoo, Jae Jung;Yong, Da Kyoung;Choi, Seok Jin;Lee, Seung Goo;Lee, Kee Yoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.266-271
    • /
    • 2014
  • The effects of antioxidants on the properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene(PC/ABS) blends were studied for the functions of the screw speed and loaded duration of high shear rate processing in order to investigate the degradation for PC/ABS blends. Tris-(2,4-di-tert-butyl-phenyl phosphate) (A1) and Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (A3) as phosphite antioxidants and Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (A2) as a phenolic antioxidant are used. The thermal properties were detected by TGA and severely decreased, after the processing. The stress-induced and thermal degradation for PC/ABS blends with the antioxidant A3 was retarded better than the others. By using UTM, the mechanical properties also showed individually decreased according to the antioxidants, after the processing, especially, the elongations showed considerable decline behaviors, while the tensile strengths of PC/ABS blends changed very little. For example, in the operating conditions of 1000rpm of screw speed and 20 seconds of loaded period, the elongations decreased from 148% before the processing, to 91.6% with the A1, to 63% with the A2 and to 131% with the A3 after the processing, respectively. In order to get the morphological properties, the size distributions of the dispersed phases for PC/ABS were investigated by SEM analysis and tended to decrease, as the screw speed and loaded period of the processing increased. Therefore, we confirmed that the antioxidant A3 was the best of all of three to inhibit the stress-induced degradation of PC/ABS blends during the high shear rate processing.

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

The Structual Restoration on Gyeongju-Style Piled Stone-Type Wooden Chamber Tombs (경주식 적석목곽묘의 구조복원 재고)

  • Gweon, Yong Dae
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.66-87
    • /
    • 2009
  • The definition of the structure of wooden chamber tomb(piled stone-type) is as follows. It is a tomb with wooden chamber, and stones were piled on top of the wooden chamber, and then a wooden structure was placed on top of the piled stones, and more stones were piled on top of the wooden structure, and sealed with clay. Of course this definition can vary according to periods, the buried, etc. Gyeongju-style piled stone type wooden chamber tombs have some distinguished characteristics compared to general definition of piled stone type wooden chamber tombs. Outside the wooden chamber, either stone embankments or filled-in stones were layed out, and pilet-in stones are positioned right above the wooden chamber, and almost every class used this type, and finally, it is exclusively found in Gyeongju area. First generations of this Gyeongju-style piled stone type wooden chamber tombs appeared in first half of 5th century. These tombs inherited characteristics like ground plan, wooden chamber, double chamber(inner chamber and outer chamber), piled stones, burial of the living with the dead, piled stones, from precedent wooden chamber tombs. However these tombs have explicit new characteristics which are not found in the precedent wooden chamber tombs such as stone embankments, wooden pillars, piled stones(above ground level), soil tumuluses. stone embankments and wooden pillars are exclusively found on great piled stone type above-ground level wooden chamber tombs such as the Hwangnamdaechong(皇南大塚). Stone embankments, wooden pillars, piled stones(above ground level) are all elements of building process of soil tumuluses. stone embankments support outer wall of above-ground level wooden chambers and disperse the weight of tumuluses. Wooden pillars functioned as auxiliary supports with wooden structures to prevent the collapse of stone embankments. Piled stones are consists of stones of regular size, placed on the wooden structure. And after the piled stones were sealed with clay, tumulus was built with soil. Piled stones are unique characteristics which reflects the environment of Gyeongju area. Piled stone type wooden chamber tombs are located on the vast and plain river basin of Hyeongsan river(兄山江). Which makes vast source of sands and pebbles. Therefore, tumulus of these tombs contains large amount of sands and are prone to collapse if soil tumulus was built directly on the wooden structure. Consequently, to maintain external shape of the tumulus and to prevent collapse of inner structure, piled stones and clay-sealing was made. In this way, they can prevent total collapse of the tombs even if the tumulus was washed away. The soil tumulus is a characteristic which emerges when a nation or political entity reaches certain growing stage. It can be said that after birth of a nation, growing stage follows and social structure will change, and a newly emerged ruling class starts building new tombs, instead of precedent wooden chamber tombs. In this process, soil tumulus was built and the size and structure of the tombs differ according to the ruling class. Ground plan, stone embankments, number of the persons buried alive with the dead, quantity and quality of artifacts reflect social status of the ruling class. In conclusion, Gyeongju-style piled stone type wooden chamber tombs emerged with different characteristics from the precedent wooden chamber tombs when Shilla reached growing stage.