• Title/Summary/Keyword: 하이 드로 포밍

Search Result 19, Processing Time 0.072 seconds

Dynamic Modeling and Simulation of a Hydro-forming Process (하이드로 포밍 공정의 동특성 해석 및 시뮬레이션)

  • Lee, Woo-Ho;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.122-132
    • /
    • 1999
  • This study describes a dynamic model of the hydroforming process which is used for precision forming of sheet metals. To help the controller design for the control of the forming pressure needed for this process as well as to investigate the effect of system parameters on the dynamic behavior, dynamic modeling is performed with emphasis on hydraulic servo system which actuates the forming machine. Since the model contains several unknown parameters, these were estimated via a least square parameter identification method. Based upon the identified model, a series of simulations were performed for various operating conditions. The results were compared with those of the experiments to verify the validity of the proposed model. The comparison study shows that the proposed dynamic model can describe dynamic behavior of the forming pressure of the hydroforming process to desirable accuracy.

  • PDF

Forming Limit Diagram Measurement of Tube for Tube Hydroforming Process (하이드로 포밍용 튜브의 성형 한계선도 측정)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.467-472
    • /
    • 2006
  • The forming limit diagram of tube is required for the part design and the formability analysis of tube hydroforming. The finite element analyses of simple bulge test were done to obtain the various strain combinations on FLC. The finite element analysis results were shown that the bursting at various strain combinations could be induced by simple bulge test. The experiment oi tube bulge test was carried out according to the test condition that obtained from finite element analysis and the left hand side of forming limit diagram was built.

A CMAC-based pressure tracking controller design for hydroforming process (CMAC를 이용한 하이드로 포밍 공정의 압력제어기 설계)

  • 이우호;박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.302-307
    • /
    • 1989
  • A pressure tracking control of hydroforming process is considered in this paper. To account for nonlinearities and uncertainties of the process, an iterative learning control scheme is proposed using Cerebellar Model Arithmatic Computer (CMAC). The experimental result shows that the proposed learning control is superior to any fixed gain controller in the sense that it enables the system to do the same work more effectively as the number of operation increases.

  • PDF

A fuzzy SOC based pressure tracking controller design for hydroforming process (Fuzzy SOC를 이용한 하이드로 포밍 고정의 압력제어기 설계)

  • 김문종;박희재;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.350-355
    • /
    • 1990
  • A pressure tracking of hydroforming process is considered in this paper. To account for nonlinearities and uncertainty of the process. A fuzzy SOC based iterative learning control algorithm is proposed. A series of experimentals were performed for the pressure tracking control of the process. The experimental results show that regardless of inherent nonlinearties and uncertainties associated with hydraulic system. A good pressure tracking control performance is obtained using the proposed fuzzy learning control algorithm.

  • PDF

Analysis of Hydroforming Process for an Automobile Lower Arm by Using Explicit and Implicit FEM (외연적과 내연적 유한요소법에 의한 자동차 로어암의 하이드로포밍 공정해석)

  • Kim, Jeong;Choi, Han-Ho;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.74-81
    • /
    • 2002
  • Recently tube hydroforming has been widely applied to the automotive industries due to its several advantages over conventional methods. In this paper, attention is paid to comparison of an implicit and an explicit finite element method widely used for numerical simulation of a hydroforming process. For an explicit FEM, a huge amount of computational time is required because of the very small time increment to solve a quasi-static problem. Hence, when an explicit FEM is used fDr a hydroforming process, it is general to convert the real problem to a virtual problem with a different processing time and mass density by appropriate scaling factor. However it is difficult to figure out how large the scaling should be adopted enough to ignore the dynamic effects and maintain the desired accuracy. In this paper, the comparison of the results obtained from both methods focus on the accuracy of the predicted geometrical shape and the stress with various scaling factors which are applied to analyze hydroforming process of an automobile lower arm.

Development of tube hydroforming technology (관재의 하이드로 포밍 기술개발)

  • 이택근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.2-34
    • /
    • 1999
  • The hydroforming technology has gained in importance over the last few years, because of its potential for substantial weight avings costs reduction and quality improvement such as collision property, shape fixability and rigidity of white body. However, in comparison with the traditional sheet forming process, the hydroforming is much younger and the main development efforts were made in the last 15 years. The new technology, high pressure tublar hydroforming in particular, involves many process parameters to be optimized. This paper covers a brief overview of the hydroforming simulator as well as design of die and tools. The effects of typical parameters such as internal pressure and axial compression stroke are presented. Moreover, the conditions of forming failure occurrences such as fracture and wrinkle are examinated.

  • PDF

A pressure tracking controller for hydroforming process (하이드로 포밍 공정의 압력 추종제어에 관한 연구)

  • 박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.317-323
    • /
    • 1987
  • A pressure tracking control of hydroforming processes, which is used in the precision forming of. sheet metals, is considered in this paper. The hydroforming of sheet metal is performed between the high-pressure chamber controlled by pressure control valve and the punch moving with constant speed. Since the pressure in the forming chamber is a critical factor to the quality of the product severely. It is important to control the pressure to follow a prescribed pressure trajectory, depending upon the material volume and shape of the parts to be formed. Taking into consideration of the volume chamge of forming chamber during the process and the nonlinearity of the electro-magnetic relief valve, a mathematical formulation of the model describing the dynamic characteristics of this model obtained. Based upon this model a PID controller is designed for the pressure tracking.

  • PDF

Effect of heat treatment conditions on the tube hydroformability (하이드로 포밍 공정시 관재의 열처리 조건에 따른 성형성 분석)

  • Park, K.S.;Kang, B.H.;Kim, D.K.;Moon, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1810-1815
    • /
    • 2003
  • Tube hydroforming provides a number of advantages over conventional stamping process, including fewer secondary operation, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. In this study, the effect of the heat treatment on the hydro-formability has been investigated. By using the mild steel tube bulging test is performed at various heat treatment conditions to evaluate the hydro-formability.

  • PDF