• Title/Summary/Keyword: 하이브리드 축

Search Result 58, Processing Time 0.026 seconds

A Study on the Local Regression Rate of Solid Fuel in Swirl Injection Hybrid Rocket (스월 인젝션 하이브리드 로켓의 고체연료 국부 후퇴율에 관한 연구)

  • Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Gi-Hun;Cho, Jung-Tae;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.77-81
    • /
    • 2008
  • The local regression rate behavior of solid fuel in swirl injection hybrid rocket were studied. In generally, axial injection regression rate was tending to be decrease with axial distance, beyond which increased with increasing axial distance from the leading edge. On the other hand, swirl injection regression rate was high at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection was increased about 54% for the overall regression rate of axial injection. Through this study, it was found that using swirl injector was useful in applying to the small sounding rocket.

  • PDF

A Study on the Measurement Technique for Local Regression rate of Solid fuel in Hybrid rocket (하이브리드 로켓 연료의 국부 후퇴율 측정기법에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Woo, Kyoung-Jin;Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Hak-Chul;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.243-246
    • /
    • 2009
  • The axial local regression rate of solid fuel of hybrid rocket is one of important parameter for a design and performance. Steeping method is simple and measure a corrcet regression rate of axial direction not being relevant to a shape of fuel and physical characteristics. In this study, the problem of other measuring equipment was improved and this linear steeping method is provide higher accuracy than the other.

  • PDF

Design of a Parallel Hybrid Vehicle Powertrain with Semi-Spherical CVT (구면무단변속기를 적용한 병렬형 하이브리드차량 동력전달계 설계)

  • Kim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-23
    • /
    • 2009
  • 구면무단변속기(SS-CVT)는 구조가 간단하여 변속기구의 부피와 무게를 기존의 변속기구에 비하여 줄일 수 있으며, 별도의 클러치 없이 출력축의 정회전, 역회전 그리고 중립상태 등을 구현할 수 있다. 본 연구에서는 이러한 구면무단변속기의 기구적 특징과 변속메카니즘을 이용하여 직류모터와 가솔린엔진을 장착한 병렬형 하이브리드차량의 동력전달계를 제안하고자 한다. 이를 위하여 먼저 구면무단변속기의 작동원리에 대해 설명하고 전용 실험장치를 제작하여 무단변속성능을 검증하였다. 또한 직류모터를 보조 동력원으로 사용하는 병렬형 하이브리드차량 동력전달계의 설계를 위해 연결기어비와 구면무단변속기의 변속비를 차량주행성능에 맞추어 설정하였으며, 이를 차량가속성능의 수치 시뮬레이션을 통하여 분석하였다. 시뮬레이션 결과를 바탕으로 구면무단변속기의 하이브리드차량 동력전달계의 적용가능성을 검증하였으며, 연구결과로 선정된 구성요소의 설계파라미터를 이용하여 시작차량을 제작하였다.

  • PDF

Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions (2엽 및 3엽 수직축 풍력-태양광 하이브리드 가로등의 발전 중 진동계측을 통한 동적 특성 비교)

  • Yi, Jin-Hak;Park, Sangmin;Yim, Sungyul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.118-125
    • /
    • 2019
  • In this study, the vibration characteristics and the resonance phenomena of a wind-solar hybrid light pole structure are compared with respect to the wind turbine type through the dynamic response measurement. Two different turbines are considered including 2-bladed and 3-bladed vertical axis wind turbine rotors. The resonance phenomenon that can occur in hybrid light pole structure is analyzed by comparing the dynamic characteristics of the structure and the excitation force under operational conditions. Displacement responses are also estimated using the acceleration measurement data by use of recently proposed method, and it is observed that the amplitude of dynamic displacement responses are in the range of 4-6 cm under the resonance in the case of 2-bladed turbine and those are limited under 2 mm in the case of 3-bladed turbine because there is no resonance.

Optimum Combination of Carbon and Glass Fiber Composite to Obtain the Hybrid Effect (하이브리드 효과를 주는 탄소섬유와 유리섬유의 최적 조합비)

  • Song, Hyung-Soo;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Using combinations of carbon and glass fiber composites normally used for strengthening of concrete structures, the hybrid effect from strengthening concrete structures using the composite is studied. To produce the hybrid effects, the specimens were made with optimum proportions of carbon fibers with glass fibers. Then, direct tensile tests were conducted on the hybrid FRP (fiber reinforced polymer) specimens. Unlike the woven fiber sheet currently used in construction sites, the FRP specimens have to be directly combined with the fibers, which make the work very complicated. Therefore, direct tensile test specimens manufacturing method based on the combination of high-tension carbon fibers and E-type glass fibers was proposed and the effects of hybridization is studied through the direct tensile test. By comparing the ductility index, the modulus of elasticity, and the stress-strain curves of the specimens, the most optimum glass to carbon fiber combination ratio for the hybrid FRP was found to be 9 to 1 with ductile K-type epoxy. The study results are discussed in detail in the paper.

Compression Behavior of Manufacturability Enhanced FRP-Concrete Hybrid Composite Pile (제작성을 개선한 하이브리드 FRP-콘크리트 합성말뚝의 압축거동)

  • Lee, Young-Geun;Park, Joon-Seok;Kim, Sun-Hee;Kim, Hong-Lak;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2013
  • As a fundamental structural element of construction, a pile is constructed to transfer loads from superstructure to foundation. In general, since the pile foundation is constructed in the ground or ground under water, it is difficult to protect from the damages due to moisture and/or salt which create corrosive environment and it is even more difficult to estimate its durability. In this study, in order to enhance the durability and constructibility of the pile foundation, FRP-concrete hybrid composite pile (HCFFT) is suggested. Moreover, equation for the prediction of load carrying capacity of HCFFT circular members under compression is suggested and discussed based on the results of analytical and experimental investigations. In addition, we also conducted the finite element simulation for the structural behavior of new HCFFT composite pile and the result is compared with those of experimental and analytical studies. In addition, the axial loading capacity of new HCFFT composite pile is compared with those of existing PHC pile and hollow circular steel pipe pile, and it was found that the new HCFFT composite pile has advantages over conventional PHC and steel pipe piles.