• Title/Summary/Keyword: 하이브리드 직물

Search Result 13, Processing Time 0.029 seconds

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics (하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.18-24
    • /
    • 2007
  • The mechanical and thermal properties of PAN-based/rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties including tensile and interlaminar shear strengths were improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate and insulation index were determined through the torch test. Continuous rayon-based carbon fabrics composite indicated relatively low ablation resistant property. The thermal conductivity of hybrid composite of spun PAN-based/continuous rayon-based carbon fabrics is lower than that of the continuous PAN-based carbon fabrics composite.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Study on the Ballistic Performance of Kevlar/Spectra Intraply Hybrid Composites (케블라/스펙트라 하이브리드 복합재료의 방탄 성능에 관한 연구)

  • 김종원;이준석;김민영;이동률
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.215-216
    • /
    • 2003
  • 섬유강화 복합재료(FRC:Fiber Reinforced Composites)는 기존의 금속재료에 비해 높은 비강도, 비강성의 특성으로 인해 자동차, 항공산업 등 폭 넓은 응용 범위에 적용되고 있다. 특히 직물 복합재료(Fibric Composites)는 취급이 용이하고, 유연성이 높기 때문에 복잡한 형상을 가지는 금형에 적용하기가 수월하다. 하지만 아직까지는 금형의 형상에 있어서 제약을 받고 있다. (중략)

  • PDF

CNT and CNF reinforced carbon fiber hybrid composites by electrophoresis deposition (전기영동법에 의한 탄소나노튜브 및 탄소나노섬유 강화 탄소섬유 하이브리드 복합재료)

  • Choi, O-Young;Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Kim, Jin-Bong;Choe, Hyeon-Seong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In order to increase the electrical conductivity and the mechanical properties of carbon fabric composites, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were deposited on carbon fabrics by anodic and cathodic electrophoretic deposition (EPD) processes. In the cathodic EPD, carbon nano-particles and nano-sized Cu particles were simultaneously deposited on the carbon fabric, which gave a synergetic effect on the enhancement of properties as well as the degree of deposition. The hybridization of carbon nano-particles and micron-sized carbon fiber significantly improved the through-the-thickness electrical conductivity. In addition, both MWCNTs and CNFs were deposited onto the carbon fabric for multi-scale hybrid composites. Multi-scale deposition improved the through-the-thickness electrical conductivity, compared to the deposition of either MWCNTs or CNFs.

Development of Premium Denim Design for the Senior Generation - Hybrid Yarn Using Conjugated Dyeing - (시니어 세대를 위한 프리미엄 데님 디자인 개발 - 하이브리드 얀 커버링 복합사 직물을 활용하여 -)

  • Chung, Sam-Ho
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2011
  • As the development of denim products using new differentiated materials plays an important role regardless of their target age groups, there is an increasing need for the development of premium denim designs for senior women using various materials. As part of the strategy to develop such a design for the senior generation, a market survey was performed regarding commercially available premium denim products in the market, and the current trends in the denim market were researched and analyzed to make use of the results in design development. In addition, a differentiated material, hybrid yarn using conjugated dyeing (HYCD) was applied to use several washing techniques capable of highlighting the unique features of denim clothing. The design of four items including a jacket, vest, capri pants and long pants were suggested. These items were differentiated from other products by emphasizing their details such as stitching and pockets. In light of the current consumer trend to select denim jeans on the basis of their fashion-ability (e.g., silhouette or color) rather than practicality or price, it is considered meaningful to develop high value added, premium jean products for the senior generation using diverse materials and details. At the same time, performing further studies designed to demonstrate the stability and reliability of the developed products through consumers' comparative assessment is required.

  • PDF

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

A study on the processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor system (FBG 센서를 이용한 PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 성형 공정 연구)

  • Kim Jae Hong;Park Jong Kyu;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.159-162
    • /
    • 2004
  • The processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor and thermocouple was studied. Once the composite is cured, the reflection spectrum from the FBG sensor shifted the center wavelength with an increase in the temperature. Also, the change in the form of the reflection spectrum obtained during the cooling process of the cure cycle was caused by the thermal shrinkage. During the curing process, uniform distribution of the temperature profile was observed throughout the sample.

  • PDF

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.