본 논문은 개선된 Complex 방법을 이용한 하이브리드 퍼지 PID 제어기의 최적 자동동조 알고리즘을 제안한다. 제어응답은 퍼지제어기의 환산계수 값에 의해 여러 종류, 여러 형태로 변화하기 때문에 해당하는 제어계의 평가 기준을 만족하도록 제어 파라미터 값을 정하는 것이 중요하다. PID 파라미터 조정법에는 많은 방법이 제안되어 왔었다. 대표적인 예로서 Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick(CHR) 등에 의해 제안된 방법들이 있다. 본 논문에서는 개선된 Complex 방법을 이용한 강력한 자동동조 알고리즘이 하이브리드 퍼지 PID 제어기의 성능을 자동적으로 개선하기 위해 사용된다. 이 알고리즘은 하이브리드 퍼지 PID 파라미터와 환산계수를 제어출력 변화율과 제한조건에 따라 자동으로 추정한다. 지연시간을 갖는 1계, 2계 공정에 적용하고. 공정출력 기준치는 단위 입력으로 한다. 제어 결과의 성능평가를 위해 ITAE(Integral of Time multiplied by the Absolute value of Error)가 사용되며, 또한 제어기의 오버슈트도 토의된다.
전력시스템안정기는 전력시스템의 저주파 댐핑을 효율적으로 향상시키기 위해 사용되는 제어기이다. 전력시스템안정기의 동적 특성은 위상 보상기의 이득과 시정수와 같은 선형 파라미터와 출력 리미터와 같이 비평활, 비선형 특성을 나타내는 비선형 파라미터에 영향을 받는다. 기존의 선형 제어 방법인 고유치 분석을 통한 선형 파라미터의 최적화 방법은 소신호 동작 범위에 대한 최적화 기법이기 때문에 큰 상정사고 시 효과적인 댐핑 향상을 보장할 수 없게 된다. 이를 극복하기 위하여 하이브리드 시스템에 신경회로망을 임베디드화하여 체계적인 방법으로 비선형 파라미터를 최적화한 후, 고유치 분석을 통해 선형 파라미터를 최적화함으로 전력시스템안정기의 성능 향상을 도모할 수 있다.
본 논문에서는 3상 유도전동기의 속도를 제어하는데 기존 제어기의 문제점을 해결하고 최적화하기 위해서 유전자 알고리즘을 이용한 하이브리드 퍼지 -PID(HFPID) 제어기를 고안하고, 이에 대한 파라미터 설정 방법을 제안한다. 유도전동기의 제어는 지연시간이 길고, 비선형성이 강하며, 부하변동이 잦은 프로세스이기 때문에, 기존의 제어방식으로는 만족할만한 결과를 얻을 수 없다. 제안한 하이브리드 퍼지-PID 제어기는 PID 제어기의 장점인 과도기의 우수성과 퍼지 제어기의 장점인 정상기의 우수성을 퍼지 변수로 결합시켜 설계한다. 이 제어기에 유전자 알고리즘을 적용하여 최적의 퍼지 및 PID 파라미터를 설정하다. 그리고 이 제어기를 3상 유도전동기의 속도 제어에 응용한다. 또한 속도오차에 대한 룩업 표를 만들어 온라인 실시간 제어를 가능하게 한다. 이상의 과정을 3상 유도전동기에서 컴퓨터 시뮬레이션 하였다. 시뮬레이션 결과를 비교해 볼 때, 하이브리드 퍼지-PID 제어기는 기존의 제어기 보다 전동기의 속도 및 토크성분 전류 둥의 특성에서 우수한 성능을 보였다.
Journal of the Korean Institute of Intelligent Systems
/
v.9
no.5
/
pp.555-565
/
1999
The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of
nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input
variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy
modeling implements system structure and parameter identification using the fuzzy inference methods and
hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of
inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid
optimal identification algorithm is carried out using both a genetic algorithm and the improved complex
method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of
premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried
out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use
the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square
method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance
index with weighting factor is proposed to achieve a balance between performance results of fuzzy model
produced for the training and testing data. Two numerical examples are used to evaluate the performance of
the proposed model.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.1
/
pp.29-34
/
2017
This paper considers hybrid beamforming for millimeter wave system in uplink transmission where multiple users send their data streams simultaneously. Hybrid beamforming has low-cost and low power consumption features compared to conventional digital beamforming schemes. We assume that each user uses one transmit antenna and sends one data stream, while the base station has multiple receive antennas and multiple radio frequency chains. Therefore, hybrid beamforming is performed only at the base station. We also assume that each user does not know instantaneous channel side information (CSI), while the base station is able to estimate the CSI from all users accurately. Under this channel assumption, the outage probability is not zero. We evaluate the outage probability of the considered hybrid beamforming as a performance metric through computer simulations. We show that the outage probability of hybrid beamforming approaches that of digital beamforming in some cases.
This paper proposes a training algorithm for global optimization of the parameters of radial basis function networks. Since conventional training algorithms usually perform only local optimization, the performance of the network is limited and the final network significantly depends on the initial network parameters. The proposed hybrid simulated annealing algorithm performs global optimization of the network parameters by combining global search capability of simulated annealing and local optimization capability of gradient-based algorithms. Via experiments for function approximation problems, we demonstrate that the proposed algorithm can find networks showing better training and test performance and reduce effects of the initial network parameters on the final results.
Ubiquitous computing has extended the computer system into the whole physical space and has ushered the emergence of more dynamic distributed systems. This environment require unique QoS parameters for various devices, resources and user requirements. In this paper, we propose a new hybrid QoS management model which defines a static-dynamic QoS parameter that is more appropriate to the ubiquitous computing environment. This model consists of the QoS Control Management Module(QoS CMM) in the client side and the Resource QoS Management Module (RQoS MM) in the server side. The RQoS MM deals with the static QoS parameters and the whole QoS control of the distributed control(QoS CMM) in order to minimize server load in cases of multiple communication. Finally, we present the experimental result of our location based application using a graphical user interface that shows the multimedia service execution of selected client device types such as desktop PC, notebook and PDA.
Discrete event system specification (DEVS) has been used in many simulations including hybrid systems featuring both discrete and continuous behavior that require a lot of time to get results. Therefore, in this study, we proposed the acceleration of a DEVS-based hybrid system simulation using multi-cores and GPUs tightly coupled computing. We analyzed the proposed heterogeneous computing of the simulation in terms of the configuration of the target device, changing simulation parameters, and power consumption for efficient simulation. The result revealed that the proposed architecture offers an advantage for high-performance simulation in terms of execution time, although more power consumption is required. With these results, we discovered that our approach is applicable in hybrid system simulation, and we demonstrated the possibility of optimized hardware distribution in terms of power consumption versus execution time via experiments in the proposed architecture.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.307-307
/
2022
최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.
구면무단변속기(SS-CVT)는 구조가 간단하여 변속기구의 부피와 무게를 기존의 변속기구에 비하여 줄일 수 있으며, 별도의 클러치 없이 출력축의 정회전, 역회전 그리고 중립상태 등을 구현할 수 있다. 본 연구에서는 이러한 구면무단변속기의 기구적 특징과 변속메카니즘을 이용하여 직류모터와 가솔린엔진을 장착한 병렬형 하이브리드차량의 동력전달계를 제안하고자 한다. 이를 위하여 먼저 구면무단변속기의 작동원리에 대해 설명하고 전용 실험장치를 제작하여 무단변속성능을 검증하였다. 또한 직류모터를 보조 동력원으로 사용하는 병렬형 하이브리드차량 동력전달계의 설계를 위해 연결기어비와 구면무단변속기의 변속비를 차량주행성능에 맞추어 설정하였으며, 이를 차량가속성능의 수치 시뮬레이션을 통하여 분석하였다. 시뮬레이션 결과를 바탕으로 구면무단변속기의 하이브리드차량 동력전달계의 적용가능성을 검증하였으며, 연구결과로 선정된 구성요소의 설계파라미터를 이용하여 시작차량을 제작하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.