• Title/Summary/Keyword: 하이브리드 미터

Search Result 103, Processing Time 0.028 seconds

Optimal Auto-tuning Algorithm for Hybrid Fuzzy PID Controller (하이브리드 퍼지 PID 제어기의 최적 자동동조 알고리즘)

  • Jeong, Byoung-Jo;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2114-2116
    • /
    • 2002
  • 본 논문은 개선된 Complex 방법을 이용한 하이브리드 퍼지 PID 제어기의 최적 자동동조 알고리즘을 제안한다. 제어응답은 퍼지제어기의 환산계수 값에 의해 여러 종류, 여러 형태로 변화하기 때문에 해당하는 제어계의 평가 기준을 만족하도록 제어 파라미터 값을 정하는 것이 중요하다. PID 파라미터 조정법에는 많은 방법이 제안되어 왔었다. 대표적인 예로서 Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick(CHR) 등에 의해 제안된 방법들이 있다. 본 논문에서는 개선된 Complex 방법을 이용한 강력한 자동동조 알고리즘이 하이브리드 퍼지 PID 제어기의 성능을 자동적으로 개선하기 위해 사용된다. 이 알고리즘은 하이브리드 퍼지 PID 파라미터와 환산계수를 제어출력 변화율과 제한조건에 따라 자동으로 추정한다. 지연시간을 갖는 1계, 2계 공정에 적용하고. 공정출력 기준치는 단위 입력으로 한다. 제어 결과의 성능평가를 위해 ITAE(Integral of Time multiplied by the Absolute value of Error)가 사용되며, 또한 제어기의 오버슈트도 토의된다.

  • PDF

Optimazation of Power System Stabilizer Based on Hybrid System Modeling (하이브리드시스템 모델링 기반 전력시스템안정기 최적화)

  • Baek, Seung-Mook;Park, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.46-47
    • /
    • 2007
  • 전력시스템안정기는 전력시스템의 저주파 댐핑을 효율적으로 향상시키기 위해 사용되는 제어기이다. 전력시스템안정기의 동적 특성은 위상 보상기의 이득과 시정수와 같은 선형 파라미터와 출력 리미터와 같이 비평활, 비선형 특성을 나타내는 비선형 파라미터에 영향을 받는다. 기존의 선형 제어 방법인 고유치 분석을 통한 선형 파라미터의 최적화 방법은 소신호 동작 범위에 대한 최적화 기법이기 때문에 큰 상정사고 시 효과적인 댐핑 향상을 보장할 수 없게 된다. 이를 극복하기 위하여 하이브리드 시스템에 신경회로망을 임베디드화하여 체계적인 방법으로 비선형 파라미터를 최적화한 후, 고유치 분석을 통해 선형 파라미터를 최적화함으로 전력시스템안정기의 성능 향상을 도모할 수 있다.

  • PDF

The Control of 3-Phase Induction Motor by Hybrid Fuzzy-PID Controller : Auto-Tuning of Parameters using Genetic Algorithms (하이브리드 퍼지-PID 제어기에 의한 3상 유도 전동기의 속도제어 : 유전자 알고리즘에 의한 파라미터의 자동 동조)

  • Kwon, Yang-Won;Ahn, Tae-Chon;Kang, Hak-Su;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.794-796
    • /
    • 1999
  • 본 논문에서는 3상 유도전동기의 속도를 제어하는데 기존 제어기의 문제점을 해결하고 최적화하기 위해서 유전자 알고리즘을 이용한 하이브리드 퍼지 -PID(HFPID) 제어기를 고안하고, 이에 대한 파라미터 설정 방법을 제안한다. 유도전동기의 제어는 지연시간이 길고, 비선형성이 강하며, 부하변동이 잦은 프로세스이기 때문에, 기존의 제어방식으로는 만족할만한 결과를 얻을 수 없다. 제안한 하이브리드 퍼지-PID 제어기는 PID 제어기의 장점인 과도기의 우수성과 퍼지 제어기의 장점인 정상기의 우수성을 퍼지 변수로 결합시켜 설계한다. 이 제어기에 유전자 알고리즘을 적용하여 최적의 퍼지 및 PID 파라미터를 설정하다. 그리고 이 제어기를 3상 유도전동기의 속도 제어에 응용한다. 또한 속도오차에 대한 룩업 표를 만들어 온라인 실시간 제어를 가능하게 한다. 이상의 과정을 3상 유도전동기에서 컴퓨터 시뮬레이션 하였다. 시뮬레이션 결과를 비교해 볼 때, 하이브리드 퍼지-PID 제어기는 기존의 제어기 보다 전동기의 속도 및 토크성분 전류 둥의 특성에서 우수한 성능을 보였다.

  • PDF

A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm (하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구)

  • 오성권
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.555-565
    • /
    • 1999
  • The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy modeling implements system structure and parameter identification using the fuzzy inference methods and hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance index with weighting factor is proposed to achieve a balance between performance results of fuzzy model produced for the training and testing data. Two numerical examples are used to evaluate the performance of the proposed model.

  • PDF

Performance Evaluation of Analog-digital Beamforming for Uplink Multi-User Millimeter Wave Systems (다수 사용자를 지원하는 상향링크 밀리미터 파 시스템을 위한 아날로그-디지털 빔포밍의 성능 평가)

  • Kim, Seong Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This paper considers hybrid beamforming for millimeter wave system in uplink transmission where multiple users send their data streams simultaneously. Hybrid beamforming has low-cost and low power consumption features compared to conventional digital beamforming schemes. We assume that each user uses one transmit antenna and sends one data stream, while the base station has multiple receive antennas and multiple radio frequency chains. Therefore, hybrid beamforming is performed only at the base station. We also assume that each user does not know instantaneous channel side information (CSI), while the base station is able to estimate the CSI from all users accurately. Under this channel assumption, the outage probability is not zero. We evaluate the outage probability of the considered hybrid beamforming as a performance metric through computer simulations. We show that the outage probability of hybrid beamforming approaches that of digital beamforming in some cases.

A Global Optimization Method of Radial Basis Function Networks for Function Approximation (함수 근사화를 위한 방사 기저함수 네트워크의 전역 최적화 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.377-382
    • /
    • 2007
  • This paper proposes a training algorithm for global optimization of the parameters of radial basis function networks. Since conventional training algorithms usually perform only local optimization, the performance of the network is limited and the final network significantly depends on the initial network parameters. The proposed hybrid simulated annealing algorithm performs global optimization of the network parameters by combining global search capability of simulated annealing and local optimization capability of gradient-based algorithms. Via experiments for function approximation problems, we demonstrate that the proposed algorithm can find networks showing better training and test performance and reduce effects of the initial network parameters on the final results.

A Hybrid QoS Management Model for Distributed Multimedia Services in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 분산 멀티미디어 서비스를 위한 하이브리드 QoS 관리 모델)

  • Jeong, Chang-Won;Lee, Geon-Yeob;Joo, Su-Chong
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.101-110
    • /
    • 2008
  • Ubiquitous computing has extended the computer system into the whole physical space and has ushered the emergence of more dynamic distributed systems. This environment require unique QoS parameters for various devices, resources and user requirements. In this paper, we propose a new hybrid QoS management model which defines a static-dynamic QoS parameter that is more appropriate to the ubiquitous computing environment. This model consists of the QoS Control Management Module(QoS CMM) in the client side and the Resource QoS Management Module (RQoS MM) in the server side. The RQoS MM deals with the static QoS parameters and the whole QoS control of the distributed control(QoS CMM) in order to minimize server load in cases of multiple communication. Finally, we present the experimental result of our location based application using a graphical user interface that shows the multimedia service execution of selected client device types such as desktop PC, notebook and PDA.

Accelerated Large-Scale Simulation on DEVS based Hybrid System using Collaborative Computation on Multi-Cores and GPUs (멀티 코어와 GPU 결합 구조를 이용한 DEVS 기반 대규모 하이브리드 시스템 모델링 시뮬레이션의 가속화)

  • Kim, Seongseop;Cho, Jeonghun;Park, Daejin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Discrete event system specification (DEVS) has been used in many simulations including hybrid systems featuring both discrete and continuous behavior that require a lot of time to get results. Therefore, in this study, we proposed the acceleration of a DEVS-based hybrid system simulation using multi-cores and GPUs tightly coupled computing. We analyzed the proposed heterogeneous computing of the simulation in terms of the configuration of the target device, changing simulation parameters, and power consumption for efficient simulation. The result revealed that the proposed architecture offers an advantage for high-performance simulation in terms of execution time, although more power consumption is required. With these results, we discovered that our approach is applicable in hybrid system simulation, and we demonstrated the possibility of optimized hardware distribution in terms of power consumption versus execution time via experiments in the proposed architecture.

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

Design of a Parallel Hybrid Vehicle Powertrain with Semi-Spherical CVT (구면무단변속기를 적용한 병렬형 하이브리드차량 동력전달계 설계)

  • Kim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-23
    • /
    • 2009
  • 구면무단변속기(SS-CVT)는 구조가 간단하여 변속기구의 부피와 무게를 기존의 변속기구에 비하여 줄일 수 있으며, 별도의 클러치 없이 출력축의 정회전, 역회전 그리고 중립상태 등을 구현할 수 있다. 본 연구에서는 이러한 구면무단변속기의 기구적 특징과 변속메카니즘을 이용하여 직류모터와 가솔린엔진을 장착한 병렬형 하이브리드차량의 동력전달계를 제안하고자 한다. 이를 위하여 먼저 구면무단변속기의 작동원리에 대해 설명하고 전용 실험장치를 제작하여 무단변속성능을 검증하였다. 또한 직류모터를 보조 동력원으로 사용하는 병렬형 하이브리드차량 동력전달계의 설계를 위해 연결기어비와 구면무단변속기의 변속비를 차량주행성능에 맞추어 설정하였으며, 이를 차량가속성능의 수치 시뮬레이션을 통하여 분석하였다. 시뮬레이션 결과를 바탕으로 구면무단변속기의 하이브리드차량 동력전달계의 적용가능성을 검증하였으며, 연구결과로 선정된 구성요소의 설계파라미터를 이용하여 시작차량을 제작하였다.

  • PDF