기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.
본 논문은 협업에 의한 추천 방법과 내용에 의한 추천 방법을 혼합한 하이브리드 추천 방법을 제시한다. 일반적으로 '영화'정보와 같이 아이템에 대한 설명이 부족하거나 실제 영화의 내용과는 차이가 있는 컨텐츠의 경우에는 '주연', '감독', '줄거리'와 같이 실제 아이템의 내용이 아닌 부수적인 정보를 통해 평가값을 예측하는 방법보다 협업에 의한 평가값의 예측을 통해 더 낳은 추천을 제공할 수 있다. 이에 따라 본 연구는 내용에 기반한 추천방법에 의존하지 않고 사용자의 유사 선호 경향이 있는 타 사용자의 평가값들을 사용하여 추천하며, 협업에 의해 추천될 수 없는 아이템들에 대해 내용기반 추천 방법을 사용하는 하이브리드 컨텐츠 추천 시스템을 설계, 구현하였다.
본 연구에서는 소셜 음악 사이트에서 사용자들이 음악 아이템을 청취한 횟수와 생성한 태그 정보를 혼합하여 음악을 추천하는 시스템을 제안한다. 현재, 상용화된 음악 추천 시스템들은 주로 사용자의 청취 습관과 외부적인 선호도 입력값을 기반으로 음악을 추천하고 있다. 그러나 이 방식은 아직 음악을 청취한 사용자가 많지 않은 새로운 음악이나 청취 정보가 없는 새로운 사용자의 경우 추천하는 데 어려움이 있다. 이 문제를 해결하기 위해서 본 논문에서는 사용자가 선정한 키워드를 아이템에 부여하는 협업 태깅으로 생성된 태그 정보를 활용하였다. 태그의 의미를 파악하여 감정 표현의 정도에 따라 가중치를 부여한 뒤, 태그 점수와 청취 횟수를 혼합하여 음악 아이템의 선호도를 산출하였다. 이를 기반으로 사용자 프로파일을 생성하고 협업 필터링 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 청취 습관 기반 추천, 태그 점수 기반 추천, 하이브리드 추천 방법의 세 가지 추천 방법에 대해서 정확도, 재현율, 그리고 F-measure를 계산하였다. 실험 결과에 대해 통계적 검증을 시행한 결과, 하이브리드 추천 방법이 다른 두 가지 방식보다 통계적으로 유의한 차이를 보여 성능이 우수한 것으로 나타났다.
정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가로 인하여 정보과잉에 따른 적절한 정보의 선택이 필요하게 되었다. 이를 위하여 이용자가 정보를 효율적으로 이용할 수 있도록 검색 또는 여과하는 일을 수행하기 위하여 정보검색 및 정보여과 시스템이 등장하게 되었다. 이러한 일련의 정보환경의 변화에 대한 보다 적극적인 대응방법으로서 도서관 및 정보센터에서는 이용자가 원하는 정보를 정확하고 효율적으로 제공하기 위한 노력의 일환으로서 이용자에게 맞춤화된 정보 추천서비스 제공이 요구된다. 본 연구에서는 도서관 및 정보센터에서 적극적인 정보서비스를 위한 방법으로 이용자에게 맞춤화된 정보를 제공할 수 있는 개인화 추천시스템을 구축하기 위한 방안을 제안하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로서 대용량 콘텐츠 및 이용자 환경에서 이용자의 콘텐츠 이용빈도를 기준으로 멀티미디어 콘텐츠를 위한 개인화된 하이브리드 추천방법을 제안하였다. 이를 위하여 이용빈도에 있어서 상위 이용자 및 콘텐츠를 분리하고 적절한 추천방법에 적용하기 위한 새로운 형태의 추천방법 및 대용량 추천시스템에 적합한 연관규칙과 협업여과방법에 대한 조합방법을 제안하였다.
본 논문에서는 사용자의 상품에 대한 평점 정보와 상품의 컨텐츠 정보를 모두 이용하는 하이브리드 추천 모델에 대해서 논의한다. 기존 논문들과는 다르게, 본 논문은 추천의 정확도를 높이기 위해 사용자가 상품의 컨텐츠 (예를 들면, 영화의 장르 또는 상품의 카테고리 등) 에 가질 수 있는 선호도를 예측하고, 이를 추가적으로 활용할 수 있는 딥러닝 기반의 추천 모델을 제안한다. 실세계의 데이터를 이용해서 제안하는 방법의 우수성을 보인다.
본 논문에서는 트위터로부터 자동 생성한 사용자 프로파일을 이용하는 개인 맞춤형 음식 추천 시스템을 제안한다. 사용자 개인의 트위터 문장에서 명사를 추출하고, 감정단어와의 공기 여부에 따라 감정점수를 계산한 후. 사용자 프로파일을 생성한다. 각 음식에 관한 정보는 웹에서 검색한 웹 페이지를 분석, 가공하여 음식별 대표 명사 목록을 만들어 사용한다. 이렇게 구축된 사용자 프로파일과 각 음식별 특징 정보 간 유사도를 계산하여 사용자에 맞는 음식을 추천 해준다. 제안하는 방법은 추천 시스템을 처음 사용하는 사용자라 할지라도 사용자 프로파일이 자동으로 구축되어 추천에 사용되기 때문에 항상 추천 결과를 얻을 수 있는 장점이 있다.
추천시스템(recommender system)은 고객의 선호도를 예측하여 상품과 서비스를 제공하는 기법으로, 현재 다양한 온라인 서비스에 활용되고 있다. 이와 관련된 많은 선행 연구들은 협업필터링(collaborative filtering)에 기반한 추천시스템을 제안하였는데, 대부분의 경우 고객의 구매 내역 또는 평점 데이터만 사용하여 진행되었다. 오늘날 소비자들은 제품을 구매하는 과정에서 온라인 검색 행동을 하여 관심있는 제품을 찾는다. 그렇기 때문에 검색 키워드 데이터는 고객의 선호도를 파악하는데 매우 유용한 정보일 수 있다. 그러나 지금까지 추천시스템 연구에서 사용되는 경우는 거의 없었다. 이에 본 연구는 고객의 검색 행동에 주목하여 온라인 쇼핑몰 고객의 검색 키워드 데이터와 구매 데이터를 고려한 하이브리드 협업 필터링을 제안하였다. 본 연구는 제안된 모델의 적용 가능성을 검증하기 위해 실제 온라인 쇼핑몰 데이터를 사용하여 성능을 검증하였다. 연구 결과, 추천 상품의 개수가 많아질수록 고객의 검색 키워드를 기반으로 구축된 협업필터링의 추천 성능이 향상되는 반면 일반적인 협업필터링의 성능은 추천된 상품의 개수가 많아질수록 점차 감소함을 발견하였다. 따라서 본 연구는 검색 키워드 데이터를 활용한 하이브리드 협업필터링이 고객의 선호도를 반영한 추천할 수 있으며, 구매이력 데이터의 정보부족을 해결할 수 있음을 확인하였다. 이는 기존의 정량 데이터만을 활용한 추천 시스템이 아닌, 비정형 데이터인 텍스트를 사용함으로써 새로운 하이브리드 협업필터링 구축 방법을 제안했다는 점에서 의의가 있다.
최근 추천 시스템의 인기와 함께 추천 시스템의 알고리즘의 성능에 대한 평가가 중요해 졌다. 본 연구는 영화 데이터에서 다양한 알고리즘 중 어떤 알고리즘의 효과적인지 판단하기 위하여 모델링과 RMSE를 통한 모델 검증을 하였다. 본 연구의 데이터는 무비렌즈의 평가 데이터 10만건을 활용하여 피어슨 상관계수를 활용한 사용자 기반 협업 필터링, 코사인 상관계수를 활용한 아이템 기반 협업 필터링 그리고 특이 값분해를 활용한 아이템 기반 협업 필터링 모델을 만들었다. 세가지 추천 모델로 평점을 예측한 결과 사용자 기반 협업 필터링보다 아이템 기반 협업 필터링의 정확도가 월등히 높은 것을 확인했고, 행렬 분해를 사용했을 때 더 정확한 추천을 할 수 있었다.
추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.
최근 성인 독서량은 지속적으로 감소하는데 비해 영상 콘텐츠 소비가 증가하고 있다. 이에 따라 새로운 사용자에 대한 선호도 및 행동 패턴에 대한 정보가 없고 새로운 도서에 대한 사용자 평가나 구매 정보가 부족해 콜드 스타트 문제와 데이터 희소성 문제가 발생하고 있다. 본 논문에서는 영상물 콘텐츠 기반 도서 하이브리드 추천 시스템을 제안하였다. 제안하는 추천 시스템은 영상물의 콘텐츠를 활용하여 콜드 스타트 문제와 데이터 희소성 문제를 해결할 수 있을 뿐만 아니라, 전통적인 도서 추천 시스템에 비해 성능이 향상됨을 보여주었다. 또한 장르, 줄거리, 평점 정보 등 사용자 취향 정보까지 모두 반영한 개인 맞춤형 추천 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.