• Title/Summary/Keyword: 하이브리드모형

Search Result 126, Processing Time 0.027 seconds

A Hybrid Approach for Rainfall-Runoff Prediction in Yongdam Dam Basin in Korea (용담댐 유역의 강우-유출 예측을 위한 하이브리드 접근법)

  • Yeoung Rok Oh;Kyung Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.70-70
    • /
    • 2023
  • 강우 발생 중 용담댐 상류로부터 용담댐으로 유입되는 유입량을 정확하게 예측하는 것은 하류 지역의 홍수 피해를 최소화하기 위한 댐의 적절한 운영에 필수적이다. 물리 기반 강우-유출 시뮬레이션 모형은 물리적 과정의 이해를 바탕으로 홍수 예측 분야에 광범위하게 사용되고 있다. 그러나 복잡한 물리 과정을 완벽히 이해하는 것은 거의 불가능하므로 다양한 가정 조건들을 이용해 복잡한 과정을 단순화하여 계산해야 하는 한계가 존재한다. 최근에는 방대한 데이터의 축적과 컴퓨터 능력의 향상으로 인해 데이터 기반 모형이 다양한 실무 문제를 해결하는 데 강력한 도구로 활용되고 있을 뿐 아니라 시뮬레이션 및 예측 등에도 다양하게 이용되고 있다. 그러나 예측 시간이 늘어날수록 입력자료로 이용되는 과거 자료와 출력자료로 이용되는 미래자료와의 상관관계가 줄어들어 모형의 성능이 저하된다. 따라서 본 연구에서는 용담댐의 시간당 유입량을 예측하기 위해 물리 기반 강우-유출 모형과 오차 보정 모형을 결합한 하이브리드 접근 방식을 제안한다. 물리 기반 강우-유출 모형으로는 HEC-HMS 모형을 사용하였으며, 오차 보정 모형에는 기계학습 모형인 인공신경망(Artificial Neural Network, ANN) 모형을 사용하였다. HEC-HMS 모형, ANN 및 하이브리드 모형(HEC-HMS + ANN)의 성능을 비교하기 위해 20 개의 홍수 사상을 모형 구축 및 검증에 사용하였다. 그 결과 하이브리드 모형은 예측 시간이 늘어날수록 HEC-HMS 및 ANN 모형보다 우수한 성능을 나타냈다. 물리모형에 기계학습을 이용한 오차 보정 절차를 통합한 경우 홍수 유출 예측의 정확성이 향상되었다. 다양한 모형의 비교 결과 본 연구에서 적용한 하이브리드 모형이 물리기반 강우-유출 모형 및 순수 기계학습 모형보다 우수한 성능을 보여줌으로써, 하이브리드 모형은 물리모형과 순수 기계학습 모형의 단점들을 보완하는데 이용할 수 있음을 나타낸다. 이 연구의 주요 목적은 강우-유출 시물레이션 모형의 오차 보정 기술에 대한 더 깊은 이해를 제공하는데 있다.

  • PDF

A hybrid hydrological modeling framework combining physically-based and deep-learning-based hydrologic models: an approach considering dam operation (물리 기반 수문모형과 딥러닝 기반 모형을 결합한 하이브리드 수문 모델링 프레임워크: 댐 운영을 고려한 접근)

  • Yongchan Kim;Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.66-66
    • /
    • 2023
  • 대규모 댐의 운영으로 인한 인위적인 유량 교란은 물리 기반 수문모형의 정확한 하천유량 모의를 어렵게 만든다. 이러한 한계를 극복하기 위해, 상류의 자연형 유역 모의를 위한 물리 기반 수문모형 Variable Infiltration Capacity model과 댐 운영 모의를 위한 딥러닝 기반 모델을 결합한 하이브리드 모델링 프레임워크를 개발하였다. 본 연구는 수도권의 주요 상수원이자 대규모 댐들이 존재하는 팔당댐 유역을 대상으로, 물리 기반 수문모형만을 기반으로 구축한 단일 및 계단식 구조의 모델과 하이브리드 모델의 예측 성능을 비교하였다. 2015년부터 2019년까지의 검증 기간 동안, 하이브리드 모델, 단일 및 계단식 구조 모델의 Nash-Sutcliffe Efficiency는 각각 0.6410, -0.1054 그리고 0.2564로 하이브리드 모델의 성능이 가장 높은 것으로 나타났다. 이는 머신러닝 알고리즘을 이용한 댐 운영 고려가 정확한 하천유량 평가를 위해서 필수적임을 시사한다. 이러한 결과는 수자원 관리, 홍수 예측 등 다양한 분야에서 활용될 수 있으며, 특히 미래의 지속 가능한 물 관리를 위해 실무자에게 정확한 자료를 제공하는 데 기여할 수 있다.

  • PDF

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.

Climate Change Policy Analysis Considering Bottom-up Electricity Generation System (발전부문 하이브리드 모형을 사용한 기후변화 정책효과 분석)

  • Oh, Inha;Oh, Sang-Bong
    • Environmental and Resource Economics Review
    • /
    • v.22 no.4
    • /
    • pp.691-726
    • /
    • 2013
  • We develop a hybrid model which allows the change in electricity generation mix by adding the electricity-sector components of bottom-up model to the conventional CGE model. The electricity sector is represented as a sum of separate generation technologies, each of which has the form of DRTS (Decreasing Returns to Scale) production function, unlike the conventional CGE model. We compare the effects of the 30% emission reduction target using the hybrid model with those using the conventional CGE model. The cost of meeting the target is lower with the hybrid model than the conventional CGE. It is consistent with previous studies in that adding the bottom-up components to the top-down model reduces the cost of emission reduction. In an extra analysis we find that an additional regulation like RPS (Renewable Portfolio Standard) increases the cost.

Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data (트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구)

  • Jeong, Chulwoo;Kim, Myung Suk
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this article, several types of hybrid forecasting models are suggested. In particular, hybrid models using the generalized additive model (GAM) are newly suggested as an alternative to those using neural networks (NN). The prediction performances of various hybrid and non-hybrid models are evaluated using simulated time series data. Five different types of seasonal time series data related to an additive or multiplicative trend are generated over different levels of noise, and applied to the forecasting evaluation. For the simulated data with only seasonality, the autoregressive (AR) model and the hybrid AR-AR model performed equivalently very well. On the other hand, if the time series data employed a trend, the SARIMA model and some hybrid SARIMA models equivalently outperformed the others. In the comparison of GAMs and NNs, regarding the seasonal additive trend data, the SARIMA-GAM evenly performed well across the full range of noise variation, whereas the SARIMA-NN showed good performance only when the noise level was trivial.

Development of Hybrid Career Coaching Model and Effect Analysis (하이브리드 진로코칭 모형 개발 및 효과분석)

  • Go, Eun-Hyeon;Park, Hye-Rim;Kim, Do-Hyeon
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.6
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, we develops the hybrid career coaching model combined the face to face and the E-coaching, and applies students of childhood education for career guidance. The presented hybrid career coaching manages a profile and state information and a remote access between the coach and coachee on Internet. Then, online part of hybrid coaching deals with saving the data, and understand of the situation of the coachee if it is necessary. And face to face part of hybrid coaching have a conversation, the checking, counsel and introspection if the coach needs. Presented hybrid career coaching model has th procedure of 6 steps such like career coaching guidance, self-understanding, career decision-making, establishment of the career execution planning, execution plan and action will inspection and execution result inspection. Proposed hybrid career coaching is possible to understand coachee's current state on the career map, realize the importance of the execution strategy and maximize the efficiency and effectiveness self-regulation capacity.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

A study on the forecast of port traffic using hybrid ARIMA-neural network model (하이브리드 ARIMA-신경망 모델을 통한 컨테이너물동량 예측에 관한 연구)

  • Shin, Chang-Hoon;Kang, Jeong-Sick;Park, Soo-Nam;Lee, Ji-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.81-88
    • /
    • 2008
  • The forecast of a container traffic has been very important for port plan and development. Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate that effectiveness can differ according to the characteristics of ports.

Control Method to Single Degree or Three Degrees of Freedom for Hybrid Testing (하이브리드 실험을 위한 1 또는 3자유도에 대한 제어 기법)

  • Lee, Jae-Jin;Kang, Dae-Hung;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2409-2421
    • /
    • 2011
  • This paper will present hybrid tests to a one bay-one story steel frame structure under ground excitation. A structure used in this paper for hybrid test, to evaluate performance and behavior, is divided into two models; one is numerical model with one column element, and a truss or a beam element, the other is physical substructural model with one beam-column element. All tests considered one or three degrees of freedom to implement real-time hybrid test, and two control algorithms to control hardware are used; one using MATLAB/Simulink, the other using OpenSees, OpenFresco and xPCTarget. In addition, for real-time data communication between numerical and physical substructural models SCRAMNet was used. The results of hybrid tests were compared with one of numerical analysis of numerical model with fiber force-based beam-column elements using OpenSees. Real-time hybrid tests were implemented for the validation of control system with simple structure, and then it will be extended to hybrid test for higher nonlinear or complex structure later on.

  • PDF

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.