• Title/Summary/Keyword: 하이볼륨 플라이애시 콘크리트

Search Result 11, Processing Time 0.02 seconds

Bond Behavior of Concrete According to Replacement Ratio of Fly Ash and Compressive Strength of Concrete (플라이애시 치환율 및 압축강도에 따른 콘크리트의 부착 거동)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Several researches on high volume fly ash concrete have been conducted to investigate its fundamental material properties such as slump, strength and durability and however, research on the structural behavior of bond strength is essential for the application of this high volume fly ash concrete to structural members because of the necessity of reinforcement. But the exact design code for application and researches on the bond behavior of high volume fly ash concrete lack yet. To achieve such a goal, this paper evaluates experimentally the bond behavior of high volume fly ash concretes by direct pull-out test and compares between the current test results and existing research results. By the test results, it is shown that the bond behavior of high volume fly ash concrete is similar to that of general concrete. And by the comparison between test and existing research, it is shown that bond stress of high volume fly ash concrete is underestimated, as the embedment length gets longer.

The Properties of Strength Development of High Volume Fly Ash Concrete with Reduction of Unit Water Content (단위수량 저감에 따른 하이볼륨 플라이애시 콘크리트의 강도 발현 특성)

  • Choi, Yun-Wang;Park, Man-Seok;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • In this study, strength development properties of high volume fly ash concrete was evaluated through compressive strength of concrete with reduction of unit water content. And concrete specimens were prepared according to target strength 3 level and variation of unit water content. As a result, the improved fluidity were obtained as a result of the ball bearing action of the spherical, the electrostatic repulsion and the particle size distribution of fly ash particles in case of using more than 50% fly ash. Through this, the mixture of fly ash has been shown to reduce the amount of water required in concrete. Also, the early strength of high volume fly ash concrete with reduction of unit water content was improved more about 66% than general concrete mixture.

An Experimental Study on Fundamental Quality Properties of Basalt Fiber Reinforced Mortar according to Application of High Volume Fly Ash (바잘트 섬유보강 모르타르의 하이볼륨 플라이애시 적용에 따른 기초 품질 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung Keol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This study was evaluated that fundamental quality properties in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber. Mortar mixtures used in the experiments used the mortar using cement only and high volume fly ash mortar using fly ash of 50%, was evaluated by comparison. As a experiments results, high volume fly ash mortar using 50% fly ash was effective for improving fiber dispersibility than mortar using cement only, accordingly, it showed that fiber aggregation phenomenon has been greatly reduced. In addition, if the fly ash used much more than 50%, the compressive strength has been shown to decrease of about 30%, fiber length and mixing ratio of basalt fiber was found to have a greater effect on flow properties than mechanical properties.

Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 및 염소이온 확산 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • The purpose of this experimental research is to evaluate the resistance of reinforcement corrosion and chloride ion penetration of high volume fly ash (HVFA) concrete. For this purpose, concrete test specimens were made for various strength level and replacement ratio of fly ash, and then compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91 and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that compressive strength of HVFA concrete was decreased with increasing replacement ratio of fly ash but long-term resistance against reinforcement corrosion and chloride ion penetration of that was increased.

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.

An Evaluation of Shear Strength of Plain HVFAC Concrete by Double Shear Test Method (2면전단시험법에 의한 무근 HVFAC 콘크리트의 전단강도 평가)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.261-266
    • /
    • 2017
  • In this study, to determine the shear properties, experiments on the shear behavior of plain concrete with the high volume fly ash cement by double shear test were performed. Test parameters are fly ash content and concrete compressive strength. Experimental results show the tendency that the shear strength similarly increases with an increase in the compressive strength as is generally known. The concrete shear strength formula proposed in the concrete structural design code of KCI shows a similar tendency to the experimental results, and It is expected that the shear strength of the high volume fly ash cement concrete can be applied with the formula given in the concrete structural design code of KCI. When considering the fly ash content ratio, the shear strength of high volume fly ash cement concrete according to fly ash conctent ratio shows as having a far greater correlation than if it is not considered to fly ash content ratio. So, even though existing code can be appliable for non consideration of the fly ash content ratio, we proposed a formula that is much more relevant than that of concrete structural design code of KCI.

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량)

  • Lee, Hyun-Jin;Bae, Su-Ho;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.375-381
    • /
    • 2017
  • Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.