• Title/Summary/Keyword: 하수형

Search Result 293, Processing Time 0.021 seconds

A Study on the Optimization of Anti-Jamming Trash Screen with Rake using by Response Surface Method (반응표면분석법을 이용한 제진기의 목메임 방지 개선 및 레이크 최적화)

  • Seon, Sang-Won;Yi, Won;Hong, Seok-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.230-236
    • /
    • 2020
  • A trash screen is installed in front of the inflow channel of a drainage pumping station, sewage treatment plant, and a power plant to block floating contaminants. The bottleneck phenomenon, which decreases the water inflow, causes damage to the damper as a result of clogging in between the screen if string type obstacles are not removed. In this paper, the apron was removed, and the screen was expanded, to prevent breakage of the bottleneck phenomenon and string type obstacles. This was designed using an extended rake by adding an inner rake in between the screen interspace to remove the bottleneck phenomenon and string type obstacles. To design the inner rake that satisfies the allowable stresses of the existing damper rake, the experiment points were determined according to the experimental design method using the inner rake vertical length and the thickness of the reinforced section as parameters. The use of the ANSYS static structural module and statistical analysis tool R software gives the optimized shape according to the response surface method. The relative error between the response surface analysis results and the simulation results was 1.63% of the determined optimal design-point rake length of 210.2 mm and the reinforcement section thickness of 2 mm. Through empirical experiments, a test rake was constructed to the actual size, and approximately 97% of the bottleneck phenomenon and string type obstacles could be removed.

A Study on Design of Vacuum Silo for Batch Treatment System for Dredged Soil (준설토 일괄처리시스템을 위한 진공사이로 설계에 관한 연구)

  • Kim, Yong-Seok;Yang, Hae-Rim;Kim, Hac-Sun;Jeoung, Chan-Se;Yang, Soon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.571-577
    • /
    • 2012
  • In this study, a small movable batch treatment system for dredging soil deposited in a rain water tube is proposed; further, a vacuum silo sorting separation device with a vacuum silo, first-stage sorting separator, and conveyor is designed. The vacuum silo sorting separation device also consists of a storage tank, transferring screw, vacuum gate, screen bar, screen bar cleaner, and vacuum discharging device. In view of the fact that the flow of drawn air in the storage tank is a major factor influencing the sorting separation performance, the optimum shape of the tank is determined by CFD flow analysis. In addition, by using CAE structure analysis, the safety of a storage tank made of boards is examined. The specifications of the vacuum silo sorting separation device are determined by conducting mechanical and dynamic simulations of the driving mechanism of the vacuum silo sorting separation device through 3D-CAD modeling. Following this study, we will design a drum-screen-type second sorter, a decanter-type dehydration device, and waste water tank and pump as a secondary device. Further, on the basis of this design, we will construct a prototype model and carry out a field test.

Hydrogeochemical Characteristics of Groundwater on Well Depth Variation in the Heunghae Area, Korea (심도 변화에 따른 흥해지역 지하수의 수리 지화학적 특성)

  • Yun Uk;Cho Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.391-405
    • /
    • 2005
  • Chemical and isotopic analysis for stream water, shallow groundwater, intermediate groundwater and deep groundwater was carried out to grasp hydrogeochemical characteristics of groundwater in the Heunghae area, Pohang city. Water type of stream water and shallow groundwaters is typified as Ca-Cl type, intermediate groundwater is $Na-HCO_3$, and deep groundwater is prominent in Wa-Cl type. $HCO_3^-\;and\;SiO_2$ in shallow groundwater are originated from weathering of silicate minerals, whereas those of deep groundwaters are resulted from weathering of carbonate minerals. Ca and Mg ions in both shallow and deep groundwaters are resulted from weathering of calcite and dolomite. $SO_4^{2-}$ in shallow groundwater is originated mainly from pyrite oxidation. As well depth increases, pH and TDS increase, but Eh and DO decrease. Alkali metal contents(K, Na, Li) increases as well depth increases, but alkali earth metal(Mg, Ca) and hi concentrations increase as well depth decreases. Anions, halogen elements(F, Cl, Br), and $HCO_3$ contents increase as well depth increases. The average stable isotope value of the groundwater of each depth is as follows; deep groundwater: ${\delta}^{18}O=-10.1\%o,\;{\delta}D=-65.8\%_{\circ}$, intermediate groundwater: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$, shallow groungwater : ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$, surface water : ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$ respectively.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Behavior of heavy metals in the surface waters of the Lake Shihwa and its tributaries (시화호와 주변 하천 표층수중의 중금속 거동 특성)

  • Kim Kyung Tae;Lee Soo Hyung;Kim Eun Soo;Cho Sung Rok;Park Chung Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.51-67
    • /
    • 2002
  • In order to understand behaviors of heavy metals around the artificial Lake Shihwa in the vicinity of Kyunggi Bay in Korea in relation with huge environmental changes due to construction of huge artificial lake, water samples were collected from Lake Shihwa and its tributaries from 1996 to 1998 and analyzed. Due to extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the Shihwa and its tributaries have been polluted in waters with various heavy metals. The enrichment factors of particulate heavy metals in water of streams and storm sewers were very high. All of the heavy metals observed in the waters showed relatively high temporal and spatial variations. In surface waters of the lake during the desalination after the dike establishment, spatial distributions of heavy metal concentrations were mainly controlled by various biogeochemical factors as well as input of industrial and municipal wastewaters, while, physical mixing was minor factor Pb and Co showed a strong affinity to particle phase, however the affinity to dissolved phase was dominated in Ni, Cu and Cd. Water quality of the artificial Lake Shihwa has been deteriorated by direct discharge of untreated wastewater and heavy metals have been accumulated in the lake system. Therefore, luther environmental improvement plan should be programmed subsequently.

  • PDF

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Hydrochemistry and Nitrogen and Sulfur Isotopes of Emergency-use Groundwater in Daeieon City (대전지역 민방위 비상급수용 지하수에 대한 수리화학과 질소 및 황 동위원소 연구)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.239-256
    • /
    • 2003
  • The purpose of this study is to investigate the hydrochemical characteristics of emergency-use groundwater in the Daejeon area, and to elucidate the contamination source of $NO_3-N$ and the origin of sulfate in the groundwater. The groundwater shows weak acidic pH, the electrical conductivity ranging from 142 to $903{\;}\mu\textrm{S}/cm$, and the hydrochemical types of $Ca-HCo_3$ and $Ca-Cl(SO_4,{\;}NO_3)$. The Box-Whisker analysis and the Krigging analysis of chemical data of groundwater were made to demonstrate the concentration distribution of hydrochemical composition, and to compare the trend of hydrochemical data. The groundwater in the area of Dong-gu, Jung-gu and Daeduk-gu, where are old town, shows higher electrical conductivity, nitrate content, sulfate and $EpCO_2$ levels than groundwater in new town area of Seo-gu and Yusung-gu. ${\delta}^{15}N$ of groundwater in the area of Seo-gu and Yusung-gu ranges from +7.4 to $+9.6{\textperthousand}$, indicating that major contamination source of $NO_3-N$ is the leakage from municipal sewage pipe lines. ${\delta}^{15}N$ of groundwater in the old town area of Tong-gu, Jung-gu and Daeduk-gu shows the range between +10.2 and $+23.5{\textperthousand}$, meaning that major contamination source is leakage of septic tank. ${\delta}^{34}S$ of groundwater shows the range of $+3~13.4{\;}{\textperthousand}$. Sulfur isotope indicates the possibility of a sulfate reduction and the input of anthrophogenic source.

Improvement of Seedling Establishment in Wet Direct Seeding of Rice using the Anaerobic Germination Tolerance Gene Derived from Weedy Photoblastic Rice (잡초벼 PBR 혐기발아 내성 유전자 활용 벼 담수직파 초기 입모 개선)

  • Jeong, Jong-Min;Mo, Youngjun;Baek, Man-Kee;Kim, Woo-Jae;Cho, Young-Chan;Ha, Su-Kyung;Kim, Jinhee;Jeung, Ji-Ung;Kim, Suk-Man
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.161-171
    • /
    • 2020
  • Direct seeding is one of the rice seedling establishment methods that is increasingly being practiced by farmers to save labor and reduce costs. However, this method often causes poor germination under flooding conditions after sowing. In this study, we developed japonica elite lines with quantitative trait loci (QTL) associated with anaerobic germination (AG) tolerance to overcome poor germination and seedling establishment in wet direct seeding. The QTL introgression lines were developed from a cross between weedy photoblastic rice as the AG donor and the Nampyeong variety via phenotypic and genotypic selection. Compared to Nampyeong, the survival rates of the selected lines were improved by approximately 50% and 240% under field and greenhouse conditions, respectively. To improve selection efficiency by marker assisted selection, the QTL markers associated with AG tolerance were converted to cleaved amplified polymorphic sequence markers designed based on next-generation sequence analysis. These lines retained similar agronomic traits and yield potential to the parent, Nampyeong. Among these lines, we selected the most promising line, which exhibited high survival rate and good agricultural traits under flooding conditions and named the line as Jeonju643. This line will contribute to breeding programs aiming to develop rice cultivars adapted to wet direct seeding. This study demonstrates the successful application of marker-assisted selection to targeted introgression of anaerobic genes into a premium quality japonica rice variety.