• Title/Summary/Keyword: 하수처리장 모델

Search Result 58, Processing Time 0.024 seconds

Environmental Assessment of Ocean Outfall for Effluent from Nambu Sewage Treatment Plant in Suyoung Bay (남부하수처리장 유출수의 해중방류 영향평가)

  • Park Hae-Sik;Park Chung-Kil;Lee Suk Mo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.41-49
    • /
    • 2000
  • When sewage and industrial wastewater are treated to improve the coastal water quality, we usually consider the reduction of BOD and/or COD. Due to the inflow of untreated nitrogen and phosphorus, however, the coastal water has eutrophicated. Thus, to improve the water qualify, it is necessary to treat and reduce nitrogen and phosphorus which are the factors limiting algal growth. Hence, with regard to the adaption of Ocean Outfall for the treatment of wastewater in Suyoung Bay, we studied the effectiveness and environmental assessment of Ocean Outfall of which cost is lower than that of advanced treatment, The effectiveness of Ocean Outfall of the second treatment effluent in Nambu S.T.P. was simulated, using the eco-hydrodynamic model as far field model the result showed that the water quality of coastal area receiving wastewater on the surface sea has improved. But the concentrations of nitrogen and phosphorus around the diffuser of Ocean Outfall system can cause many problems on estuary, such as red tide, eutrophication and aquatic toxicity.

  • PDF

Development and Validation of Multiple Regression Models for the Prediction of Effluent Concentration in a Sewage Treatment Process (하수처리장 방류수 수질예측을 위한 다중회귀분석 모델 개발 및 검증)

  • Min, Sang-Yun;Lee, Seung-Pil;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.312-315
    • /
    • 2012
  • In this study, the model which can predict the quality of effluent has been implemented through multiple regression analysis to use operation data of a sewage treatment plant, to which a media process is applied. Multiple regression analysis were carried out by cases according to variable selection method, removal of outliers and log transformation of variables, with using data of one year of 2011. By reviewing the results of predictable models, the accuracy of prediction for $COD_{Mn}$ of treated water of secondary clarifiers was over 0.87 and for T-N was over 0.81. Using this model, it is expected to set the range of operating conditions that do not exceed the standards of effluent quality. In conclusion, the proper guidance on the effluent quality and energy costs within the operating range is expected to be provided to operators.

Modeling the Resident Characteristics of Land-Based Pollutant Inflow to Suyeong Bay (수영만으로 유입되는 육상기인 오염물질의 체류특성 모델링)

  • Jung, Woo-Sung;Hong, Sok-Jin;Lee, Won-Chan;Kim, Hyung-Chul;Kim, Jin-ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.45-57
    • /
    • 2019
  • The resident characteristics of land-based pollutants were analyzed to manage the pollution sources affecting Suyeong Bay. These characteristics were analyzed using a hydrodynamic model and particle tracking model. Pollutants were represented by particles, and the amount of particles and pollutants was represented proportional. The resident characteristics were analyzed by comparing the amount of pollutant load, resident pollutants, and the ratio of resident pollutants remaining in the bay relative to the incoming load for each the of pollution sources. The order of the pollution sources was as follows, according to the amount of resident pollutants at Suyeong Bay. the Suyeong WasteWater Treatment Plant(WWTP), Nambu WWTP, Suyeong river and so on. The amount of resident pollutants was smaller for small load farther away from the interior of bay. Nambu WWTP had the greatest load among the pollution sources, but it showed the smallest ratio of pollutants remaining in the bay relative to incoming load among the pollution points. The result indicates that pollutants affect sea areas differently according to the characteristics each area and the topographic characteristics of pollution sources.

Designing a decision making system of inferring reasonable $O_2$Quantity needed to process wastewater via biological reaction (생물학적 하수처리에 소요되는 적정 폭기량의 판단 시스템 설계)

  • 이진락;양일화;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-96
    • /
    • 2001
  • This paper presents a decision making technique of reasonable $O_2$quantity needed to resolve organic matter via microbe in wastewater treatment. Decision making system of inferring reasonable $O_2$quantity consists of three parts. The first part is to compute reasonable $O_2$quantity with given process data. The second part is to find output features of processed wastewater using process model when $O_2$quantity is changed to a value inferred from decision making system. The third part is to show the results of decision making system. In order to verify performance of proposed decision making system computer simulation was done with process data gathered during 40 days. Simulation result shows that $O_2$quantity can be reduced over 10% under the condition of satisfying the specifications for processed wastewater.

  • PDF

Cost Analysis of Ocean Outfall and Tertiary Treatment Processes in Suyong Sewage Treatment Plant (수영 하수처리장 방류수의 해중 방류법과 3차 처리시설 설치시 비용 비교 분석)

  • 박해식;조은일;박청길
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1999
  • Sewage has been almost treated by secondary treatment process. Secondary-treated effluent of sewage treatment plant caused the pollution of nearby beach. Nitrogen(N) and Phosphorus(P) in effluent water have caused many problems on estuary, such as red tide, eutrophication and aquatic toxicity. Therefore, the effective nitrogen and phosphorus removal from sewage treatment plants is necessary to prevent those pollution problems. However, little sewage treatment plant in Korea is effectively being operated for the removal of the nutrients. This study is analyzed for the effectiveness of cost when tertiary treatment process and Ocean Outfall are applied for the water quality of Suyong Bay After secondary treatment process, the effluent was discharged from the seabed in the depth of 32m of 4000m offshore. Pollutant concentration is decreased as much as the 180 times after the result of initial dilution, so that environmental protection requirement of Suyong Bay can satisfied. This Ocean Outfall process can save the 2.6~3.5 times as much as the cost of construction and operation for tertiary treatment process running over a 20 year.

  • PDF

Optimization of Operation Conditions for Improving the Nitrogen Removal Efficiency in Wastewater Treatment Plant (질소제거효율 향상을 위한 하수처리장 최적 운전조건 도출 연구)

  • Choi, Eun-Hee;Bram, Klapwijk;Mathijs, Oosterhuis
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • 네덜란드 브리젠빈 하폐수처리장 최종방류수의 $NH_4$-N 및 TN(Total Nitrogen)농도를 방류수 수질기준인 각각 4 mg/L와 10 mg/L에 맞추기 위한 최적의 운전조건을 도출하기 위해 다양한 제어시스템이 시뮬레이션 되었다. 본 연구에 사용된 모델은 IWA(International Water Association) 활성슬러지 모델 No.1 (ASM No.1)이었고, GPS-X가 시뮬레이터로 사용되었다. 모델링을 위한 매개변수 민감도 분석결과 ASM No.1의 총 19개 매개변수 중 8개 변수 ($Y_H$, ksh, koh, $b_H$, ${\mu}_a$, $k_{NA}$, kh, ka)가 방류수 수질에 영향을 미치는 것으로 조사되었고 이들 매개변수에 대해 보정을 수행하여 사용하였다. SRT, 호기/무산소기간, 외부탄소원 주입시간 변화에 따른 방류수질 변화를 시뮬레이션하였는데, 호기/무산소 11h/1h인 조건에서 SRT가 20일에서 25일로 증가되면 $NH_4$-N가 5.0 mg/L에서 2.9 mg/L로 감소되었고 호기/무산소 2h/1h의 조건에서는 SRT증가에 따라 $NH_4$-N은 큰 감소를 보이지만, 바이패스되는 유입수량의 감소로 탈질율이 낮아 방류수 TN이 11.1~11.5 mg/L로 예측되는 결과가 도출되었다. 탈질율을 높이기 위한 아세트산 주입은 동일한 양의 아세트산을 무산소 전기간 (1h)동안 균일 주입하는 것 보다는 무산소 초기 15분내에 주입하는 것이 효율적인 것으로 나타났다.

A Study on the Yongsan River Basins Water Management Plan Using the Models(HSPF) (유역모형(HSPF)을 이용한 영산강 유역 수질관리방안에 관한 연구)

  • Cho, MoonSoo;Yoon, Chun Gyung;Ryu, Je ha;Kim, Jinwon;Lee, Seungjae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.385-385
    • /
    • 2015
  • 정부는 1998년부터 4대강 물관리종합대책을 세워 하천의 수질보전을 위한 대책을 시행하고 있다. 그 중 대유역 중심의 수질개선대책은 전체적인 큰 목표를 제시하는 것이며, 이러한 대유역의 목표수질을 달성하기 위해서는 먼저 소유역의 수질개선이 이루어져야 한다. 현재 영산강유역에서는 도시하수종말처리장, 산업폐수처리장과 같은 점오염원 관리시설은 대폭 확충되었으나 하천과 호소의 수질은 크게 향상되지 못하고 있다. 이는 중 소유역에 대한 효율적인 수질개선대책이 없기 때문이며, 특히 중 소유역 내 비점오염원 물질이 대량으로 하천 및 호소에 유입되기 때문이다 따라서 효율적인 유역관리를 위해서는 소유역중심의 관리가 필요하며, 소유역 중심의 수질보전 대책을 수립하기 위해서는 대상 소유역에 대한 조사분석이 선행되어야 하는데, 여기에는 관거(우수관, 오수관) 시스템 조사와 하수의 차집조사가 관계되며, 또한 소유역내의 오염원(점오염원과 비점오염원) 및 잠재적인 오염원조사 등과 같은 광범위한 조사 작업이 필요하다. 한편 유역모형 중 HSPF모형은 모형의 적용에 필요한 방대한 자료와 노력을 최소화 되도록 개발되어 왔으며, HSPF는 광범위한 수문 수질과정을 장기 모의가 가능하도록 일련의 구조화된 모듈로 구성되어 있다. 복잡한 모형일수록 자료관리에 많은 노력이 요구되나 HSPF는 자료를 직접적으로 접근할 수 있는 Time Series Management System에 가깝도록 개발되었다. 또한, HSPF 모델은 유역내의 토지이용에 따른 특정 오염물질의 비점오염 부하를 계산하며, 강우에 따른 물의 흐름을 하천의 수질오염모의와 연결시키는데, 광범위한 유역조건에 적용이 가능하고, 각 소유역을 구분하여 비교가 가능하므로 소유역별 관리방안을 비교하는데 가장 적합한 모델이다. 따라서 본 연구는 유역모형(HSPF)을 이용하여 영산강 유역을 대표할 수 있는 중 소유역을 선정하고, 선정된 중 소유역에 대한 기초적인 자료를 조사 분석하여 종합적이고 구체적인 유역 관리계획을 수립해 봄으로써 중 소유역 수질관리에 지침서로서 역할을 하는데 목적이 있다.

  • PDF

Development of Sludge Concentration Estimation Method using Neuro-Fuzzy Algorithm (뉴로-퍼지 알고리즘을 이용한 슬러지 농도 추정 기법 개발)

  • Jang, Sang-Bok;Lee, Ho-Hyun;Lee, Dae-Jong;Kweon, Jin-Hee;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • A concentration meter is widely used at purification plants, sewage treatment plants and waste water treatment plants to sort and transfer high concentration sludge and to control the amount of chemical dosage. When the strange substance is contained in the sludge, however, the attenuation of ultrasonic wave could be increased or not be transmitted to the receiver. At that case, the value of concentration meter is higher than the actual density value or vibrated up and down. It has also been difficult to automate the residuals treatment process according to the problems as sludge attachment or damage of a sensor. Multi-beam ultrasonic concentration meter has been developed to solve these problems, but the failure of the ultrasonic beam of a specific concentration measurement value degrade the performance of the entire system. This paper proposes the method to improve the accuracy of sludge concentration rate by choosing reliable sensor values and learning them by proposed algorithm. The prediction algorithm is chosen as neuro-fuzzy model, which is tested by the various experiments.

Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay (생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측)

  • Kwoun, Chul-Hui;Kang, Hoon;Cho, Kwang-Woo;Maeng, Jun-Ho;Jang, Kyu-Sang;Lee, Seung-Yong;Seo, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The long-term water-quality change of Asan Bay by the influx of polluted disposal water was predicted through a simulation with an Eco-hydrodynamic model. Eco-hydrodynamic model is composed of a multi-level hydrodynamic model to simulate the water flow and an ecosystem model to simulate water quality. The water quality simulation revealed that the COD(Chemical Oxygen Demand), dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) are increased at 5 stations for the subsequent 6 months after the influx of the effluent. COD, DIN and DIP showed gradual decreases in concentration during the period of one to two years after the increase of last 6 months and reached steady state for next three to ten years. Concentration levels of COD, DIN, and DIP showed the increase by the ranges of $11{\sim}67%$, $10{\sim}67%$, and $0.5{\sim}7%$, respectively, which represents that the COD and DIN are the most prevalent pollutants among substances in the effluent through the sewage treatment plant. The current water quality of Asan Bay based on the observed COD, TN and TP concentrations ranks into the class II of the Korean standards for marine water quality but the water quality would deteriorate into class III in case that the disposal water by the sewage plant is discharged into the Bay.

  • PDF

Design of a Wastewater Treatment Plant Upgrading to Advanced Nutrient Removal Treatment Using Modeling Methodology and Multivariate Statistical Analysis for Process Optimization (하수처리장의 고도처리 upgrading 설계와 공정 최적화를 위한 다변량 통계분석)

  • Kim, MinJeong;Kim, MinHan;Kim, YongSu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.589-597
    • /
    • 2010
  • Strengthening the regulation standard of biological nutrient in wastewater treatment plant(WWTP), the necessity of repair of WWTP which is operated in conventional activated sludge process to advanced nutrient removal treatment is increased. However, in full-scale wastewater treatment system, it is not easy to fine the optimized operational condition of the advanced nutrient removal treatment through experiment due to the complex response of various influent conditions and operational conditions. Therefore, in this study, an upgrading design of conventional activated sludge process to advanced nutrient removal process using the modeling and simulation method based on activated sludge model(ASMs) is executed. And a design optimization of advanced treatment process using the response surface method(RSM) is carried out for statistical and systematic approach. In addition, for the operational optimization of full-scale WWTP, a correct analysis about kinetic variables of wastewater treatment is necessary. In this study, through partial least square(PLS) analysis which is one of the multivariable statistical analysis methods, a correlation between the kinetic variables of wastewater treatment system is comprehended, and the most effective variables to the advanced treatment operation result is deducted. Through this study, the methodology for upgrading design and operational optimization of advanced treatment process is provided, and an efficient repair of WWTP to advanced treatment can be expected reducing the design time and costs.