• Title/Summary/Keyword: 하수처리방류수

Search Result 185, Processing Time 0.023 seconds

Efficient Micro-Ozone-Bubble Generation by Improving Ozone Dissolution Tank Structure (오존용해탱크 구조 개선을 통한 효율적인 마이크로오존버블 생성)

  • Park, Yong-hwa;Lee, Gwang-hi;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.549-555
    • /
    • 2017
  • The purpose of this study is to investigate how ozone-dissolution-tank structure affects micro-ozone-bubble distribution, energy consumption and water treatment efficiency. The partition walls inside the ozone-dissolution-tank generate pressure changes, shear forces, and swirling flows, which change the size of the bubble diameter. The size of the bubble diameter differs by 10.5% depending on the partition walls. Changes in ozone-bubble diameter are related to energy consumption. As the ozone-bubble becomes smaller, the bubble generation energy increases, but the ozone production energy decreases as the dissolution efficiency increases. Therefore, an ozone-dissolution-tank should be determined by means of an optimal condition producing a micro-ozone-bubble with a minimum sum of bubble generation energy and ozone production energy. The energy consumed to inject the same amount of ozone into the effluent differs by 2.5% depending on the partition walls. However, considering the water treatment efficiency, the conditions for selecting the ozone-dissolution-tank are variable. This is because the free radicals that increase as the ozone-bubble gets smaller are very efficient for water treatment. Even at the same ozone injection concentration, the water treatment efficiency differs by 10.4% according to the partition walls. Therefore, we have studied ozone-dissolution-tank structure which produces reasonable ozone-bubble considering water treatment efficiency and energy efficiency.

Changes of Nitrifying Bacteria Depending on the Presence and Absence of Organic Pollutant in Nak-Dong River (낙동강에서의 유기성 오염 유무에 따른 질화세균의 변화)

  • Jin, Seon-Yeong;Lee, Young-Ok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • This study was performed at 2 sites of Nak-Dong River to investigate the changes of nitrifiers depending on the presence and absence of organic pollutants (due to the effluents of domestic wastewater treatment plant, WWTP). Conventional chemical parameters such as T-N, $NH_4$-N, $NO_2$-N, $NO_3$-N were measured and the quantitative nitrifiers at the 2 sites were analyzed comparatively by fluorescent in situ hybridization (FISH) with NSO190 and NIT3, after checking the presence of gene amoA of ammonia oxidizing bacteria (AOB) and 16S rDNA signature sequence for Nitrobacter sp. that belongs to nitrite oxidizing bacteria (NOB). Also ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria were detected using FISH to get a glimpse of the general bacterial community structure of the sites. Based on the distribution structure of the ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria and the measurement of nitrogen in different phases, it could be said that the site 2 was more polluted with organics than site 1. Corresponding to the above conclusion, the average numbers of AOB and NOB detected by NSO160 and NIT3, respectively, at site 2 [AOB, $9.3{\times}10^5$; NOB, $1.6{\times}10^6$ (cells/ml)] was more than those at site 1 [AOB, $7.8{\times}10^5$; NOB, $0.8{\times}10^6$ (cells/ml)] and also their ratios to total counts were higher at site 2 (AOB, 27%; NOB, 34%) than those at site 1 (AOB, 18%; NOB, 23%). Thus, it could be concluded that the nitrification at site 2 was more active due to continuous loading of organics from the effluents of domestic WWTP, compared to site 1 located closed to raw drinking water supply and subsequently less polluted with organics.

Integrated Evaluation of Advanced Activated Sludge Processes Based on Mathematical Model and Fuzzy Inference (수학적 모델 및 퍼지 추론에 의한 고도 활성슬러지 공정의 통합 평가)

  • Kang, Dong-Wan;Kim, Hyo-Su;Kim, Ye-Jin;Choi, Su-Jung;Cha, Jae-Hwan;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • At present, the biological nutrient removal (BNR) process for removal of nitrogen and phosphorus is being constructing to keep pace with the reinforced standard of effluent quality and the traditional activated sludge process of preexistence is being promoting to retrofit. At the most case of retrofitting, processes are subjected to be under consideration as alternative BNR process for retrofitting. However, process evaluation methods are restricted to compare only treatment efficiency. Therefore, when BNR process apply, process evaluation was needed various method for treatment efficiency as well as sludge production and aeration cost, and all. In this study, the evaluation method of alternative process was suggested for the case for retrofitting S wastewater treatment plant which has been operated the standard activated sludge process. Three BNR processes for evaluation of proper alternatative process were selected and evaluated with suggested method. The selected $A^2$/O, VIP and DNR processes were evaluated using the mathematical model which is time and cost effective as well as gathered objective evaluation criteria. The evaluation between 5 individual criteria was possible including sludge production and energy efficiency as well as treatment performance. The objective final decision method for selection of optimal process was established through the fuzzy inference.

Estimation of Water Quality Improvement Benefit Using Replacement Cost Approach (대체비용법을 이용한 하천 수질개선편익 산정)

  • Yeo, Kyu-Dong;Yi, Choong-Sung;Kim, Gil-Ho;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.343-353
    • /
    • 2009
  • The objective of this study is to evaluate the effect of the water quality improvement by water discharge through dams and to provide a benefit estimation methodology, taking domestic situation into consideration, by the replacement cost approach analyzed with a sewage treatment plant instead of an alternative dam. To this end, facility that alternates a dam must have same functions of the discharged water from the dam and the two facilities must be able to be compared objectively. To estimate the benefit, estimation methodology of alternative facility's cost is established and criteria of cost.benefit analysis that are duration period and ratio of large scale repairing expense was presented. As a case study, the water quality improvement benefit of Song-Li-Won dam was evaluated, which is planned to be built on Nae-Sung stream in Nak-Dong River system. The results of applying this methodology to Song-Li-Won dam are 644,006 million won of the annual average discharge and 1,351,526 million won of maximum discharge. The usage of the framework in this study is expected for estimation of water quality improvement benefit in case water quality improvement project is performed.

Management of water quality by estimated the point source in Mokpo inner bay (점 오염원 조사를 통한 목포 내항의 수질관리)

  • Kim, Do-Hee;Lee, Ha-Ju
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.121-128
    • /
    • 2006
  • The results of COD researched on August of 2004 were 6.8 ppm in North Mokpo inner Bay, 4.4 ppm in front of YongSang Bank and 4.6 ppm in front of ShinAn Beach Hotel which is over III level Marine-Environmental Standard. The other five stations sea water quality of Mokpo inner bay were reached II-III level. Concentration of total nitrogen range from 1.23 ppm to 3.56 ppm and total phosphorous was range from 0.07 ppm to 0.12 ppm which were II-III level. This results show that the Mokpo inner bay is unsuitable for aquaculture and growth of fish and for use of marine resort, it can be only available for industrial and harbour use. In results of estimated point source flow into Mokpo inner bay, the occupation ratio from YoungSang river in total inflow of TN and TP were up to 49-89 % respectively. It is indicate that in order to improve the water quality of MokPo inner bay have to control the discharge from YoungSang river first of all, then control the discharge from North Harbour domestic wastewater treatment, InAm river and NamHae domestic wastewater treatment.

  • PDF

The Qualiatative Characteristics of Phthalate in Miho Stream around Cheongju City (청주시 근교 미호천의 프탈레이트 정성적 특성)

  • Shin, Jinhwan;Jeoung, Youngdo;Lee, Yeouljae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.5-11
    • /
    • 2008
  • The paper presents the results of qualitative analysis of phthalate esteres in Miho stream in of Cheongju city. Phthalate esters (Di-2-ethylhexylphthalate, Di-n-butylphthalate) are widely used as plasticizers to increase the flexibility and workability of high-molecular-weight polymer. For water phase, DEHP concentration in upper stream and down stream were $12-18{\mu}g/{\ell}$ and $11-21{\mu}g/{\ell}$, respectively. For sediment phase, DEHP concentration in upper stream and down stream were $0.07-0.82{\mu}g/g$ (dry) and $0.06-0.92{\mu}g/g$ (dry), respectively. Also, DnBP concentration of sediment in same site were $0.04-0.25{\mu}g/g$ (dry) and $0.08-0.34{\mu}g/g$ (dry), respectively. DEHP and DnBP concentration of water phase in the small stream of industrial area were $13-28{\mu}g/{\ell}$ and $2-8{\mu}g/{\ell}$, respectively. DEHP and DnBP concentration of sediment phase in the small stream of industrial area were $0.12-0.7{\mu}g/g$ (dry) and $0.17-2.16{\mu}g/g$ (dry), respectively. Phthatlate esteres in water and sediments phase of Miho stream were lower than water bodies around the world.

  • PDF

Simultaneous Determination of Pesticides in Water Using a GC/MS Coupled with Micro Extraction by Packed Sorbent (MEPS-GC/MS를 이용한 농약류 동시 수질분석)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.262-268
    • /
    • 2015
  • This study established an analytical method to simultaneously determine six organophosphorous pesticides [methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, and O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)] and carbaryl in water using a gas chromatography/mass spectrometry (GC/MS) system coupled with on-line micro extraction by packed sorbent (MEPS) and programmed temperature vaporizer (PTV) injector. Polystyrene divinylbenzene (PDVB) was used as a sorbent of MEPS. The effects of elution solvents, pH, elution volume and draw-eject cycles of samples on sample pretreatment process were investigated. Also, quality assurance and quality control (QA/QC) and the recovery of the pesticides in environmental samples were evaluated. The elution was performed using $30{\mu}L$ of a mixed solvent (acetone : dichloromethane = 80 : 20 (v/v)). Sample pretreatment processes were optimized with seven cycles of draw-eject of sample (1 mL) spiking an internal standard and sulfuric acid. At lower pH, the analytical sensitivity of diazinon decreased, but that of carbaryl increased. The method detection limit and the limit of quantification for this method were 0.02~0.18 and $0.08{\sim}0.59{\mu}g/L$, respectively. The method precision and accuracy were 1.5~11.5% and 83.3~129.8%, respectively, at concentrations of $0.5{\sim}5.0{\mu}g/L$. The recovery rates for all the pesticides except carbaryl in various environmental samples ranged 75.7~129.3%. The recovery rate of carbaryl in effluent sample was over 200% whereas carbaryl in drinking water, groundwater, and river water were in the acceptable range.

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Introduction of the Basin Sewerage Plan in Japan through Case Studies of the Lake Biwa Sewerage System (비와호 유역하수도 사례분석을 통한 일본 유역하수도계획의 소개)

  • Han, Mideok;Park, Bae Kyung;Park, Ji Hyoung;Kim, Yong Seok;Rhew, Doug Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.533-541
    • /
    • 2015
  • We investigate the Japan's Master Plan of Comprehensive Sewerage System (JMPS) and Lake Biwa basin sewerage and suggest future development direction of the Watershed Sewerage System Maintenance Plan in Korea enforced on February 2, 2013. The JMPS is designed for compliance with the environmental standard for water quality under the Environmental Policy Act. The effluent standards applied in the master plan of Lake Biwa's Sewerage Plan for the Lake Biwa is tougher than the national standards. Therefore the Lake Biwa Baisn Sewerage System was the first in Japan to adopt facilities that perform advanced treatment for nitrogen and phosphorus removal. BOD, SS, T-N and T-P concentrations of discharge water of sewage are 0.9, 0.6, 5.5, 0.06 mg/L, respectively. Especially removal efficiency for BOD is 99.5 percent. It is necessary to study the diversification of the evaluation criteria, cost minimization approach, subsidy system improvement, economic concept of discharge load adjustment system and establishment of basin sewerage concept for the development of the basin sewerage plan in Korea.