• Title/Summary/Keyword: 하수도 시설

Search Result 641, Processing Time 0.027 seconds

A study on the Livestock nonpoint source runoff characteristics and Load Calculation (축산계 비점오염원 유출 특성 및 부하량 산정에 관한 연구)

  • Ryu, Jeha;Yoon, Chun Gyung;Cho, MoonSoo;Lee, HyoJun;Lee, BoMi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.574-574
    • /
    • 2016
  • 유역으로 유입되는 오염물질의 발생원은 점오염원과 비점오염원으로 구분할 수 있으며 점오염원의 경우 생활하수, 산업폐수, 그리고 축산폐수에 대해 처리시설 확충 및 기술개발을 통해 관리하고 있다. 비점오염원에서의 오염물질 유출은 토지이용, 강우, 불특정적인 오염물질 투입상태 등에 따라 다르며, 지역적 특성에 영향을 받기 때문에 불확실성이 고려되어야 한다. 특히 농촌지역에서의 비점오염은 접근이 어렵고 관리주체가 모호하여 좀처럼 규명되지 않았으며, 전국적으로 그 영향이 정량화되지 않아 실질적인 관리 및 대책마련에 어려움이 있었다. 특히, 가축분뇨의 발생으로부터 처리, 자원화에 이르기까지 각 관리체계에 있어서 축산비점오염의 배출경로와 수계오염부하량, 수질환경 영향을 정밀하게 분석하여 향후 대책마련을 위한 기초자료를 확보할 필요가 있다. 또한 전국적으로 비점오염이 수계에 미치는 영향과, 그 중 축산비점오염의 영향을 면밀히 분석하여 향후 정책 및 제도개선을 위한 과학적 기초자료로서 활용할 필요가 있다. 따라서 본 연구에서는 축산 밀집 지역을 대상으로 오염원 조사를 통해 강우시 비점오염 모니터링 지점을 선정 하였으며, 년5회씩 강우 모니터링을 하여 기초데이터를 축적 하였다. 대상지역은 강원도 횡성군에 위치한 일리천 유역이며 농가 수는 총 90개의 농가가 위치하고 있는데 그 중 돼지 1,467마리, 한우 1,957마리, 젖소 581마리, 개 2,880마리, 닭 75,000마리, 사슴 4마리로 조사되었다. 대상유역을 대상으로 배출부하량을 조사한 결과 BOD 배출부하량은 총 509.3 kg/day, T-N 배출부하량은 총 331.5 kg/day, T-P 배출부하량은 총 28.3 kg/day로 조사되었다. 유출특성을 파악하기 위하여 유량가중평균농도(Event Mean Concentration, EMC)를 산정한 결과 BOD의 경우 MW-4에서 1.2 mg/L - 7.2 mg/L, MW-5에서 0.8 mg/L - 6.3 mg/L, MW-7에서 0.7 mg/L - 5.2 mg/L의 범위를 보였다. T-N의 경우 MW-4에서 1.426 mg/L - 5.321 mg/L, MW-5에서 1.205 mg/L - 4.27 mg/L, MW-7에서 0.989 mg/L - 3.859 mg/L의 범위를 보였다. T-P의 경우 MW-4에서 0.245 mg/L - 0.632 mg/L, MW-5에서 0.236 mg/L - 0.596 mg/L, MW-7에서 0.213 mg/L - 0.521 mg/L의 범위를 보였다. 본 연구에서 EMC를 산정한 방법은 평시 수질 및 유량을 정하는 기준에 따라 값이 많이 달라질 수 있다. 따라서 합리적으로 평시 부하량을 제외하고 강우시의 영향을 파악할 수 있는 EMC 산정방법에 대한 추가적인 고찰이 필요할 것으로 사료된다.

  • PDF

A Study on Grade Classification for Improvement of Water Quality and Water Quality Characteristics in the Han River Watershed Tributaries (한강 수계 지류 하천의 수질 특성 및 수질 개선을 위한 등급화 방안 연구)

  • Cho, Yong-Chul;Park, Minji;Shin, Kyungyong;Choi, Hyeon-Mi;Kim, Sanghun;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.215-230
    • /
    • 2019
  • The objective of this research is to evaluate the water quality characteristics using the statistical analysis of major tributaries in the Han River and to provide water quality improvement plan by selecting tributaries that should be preferentially managed by river grade classification method. The major 15 tributaries in Han River watershed were monitored for discharge and water quality during January-December 2017. As a result of the correlation analysis, the river discharge has been not correlation with other water quality constituents (p>0.05) but COD and TOC were significantly correlated (r=0.957, p<0.01). The main cause of water quality fluctuation was organic pollutants and nutrients in the principal component analysis (PCA) method. The BOD, COD, TOC, TN, and TP were found to be significantly different (p<0.05) by seasonal in result of one-way ANOVA analysis. Result of river grade classification by quantitative indicators the tributaries requiring improvement of water quality were Gulpocheon, Anyangcheon, Wangsukcheon, and Tancheon which affected by wastewater treatment plant.In this research, we determined tributaries that need to improve the water quality of Han River watershed and it can be used as an important data for efficient water quality management.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Analysis study on substances subject to management using long-term water quality monitoring data in tributaries of the Nakdong River basin (낙동강유역 지류에서의 장기 수질모니터링 자료를 이용한 관리 대상물질 분석 연구)

  • Byungseok Kal;Jaebeom Park;Seongmin Kim;Sangmin Shin;Soonja Jang;Minjae Jeon;Donghyun Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.326-334
    • /
    • 2023
  • The purpose of this study is to use long-term water quality monitoring data from tributaries of the Nakdong River system to identify problematic substances in tributaries by examining the rate of exceedance and increase in water quality targets. In the Nakdong River system, monitoring is conducted once a month for 38 tributaries that require intensive management, and this data was used to analyze trends in exceeding and increasing target water quality at each point. The analysis items are eight items that can be evaluated based on river water quality standards: DO, BOD, COD, TOC, SS, total phosphorus, fecal coliform, and total coliform. As a result of the analysis, the target water quality exceedance rate was more than 50%, and the items with an increasing trend were TOC, fecal coliform and total E. coli counts, and the items with an exceedance rate of less than 50% but an increasing trend were SS. TOC is believed to be caused by an increase in non-degradable substances, and the continued increase in Total Coliform will require management of Total ColiformTotal Coliform in effluent water from sewage treatment facilities in the future.

Economic Effect Analysis of Pyongyang's 50,000 Housing Units Construction Project (평양 5만세대 주택건설계획의 경제적 효과 분석)

  • JooYung Lee
    • Analyses & Alternatives
    • /
    • v.8 no.1
    • /
    • pp.87-109
    • /
    • 2024
  • At the 8th Party Congress in 2021, North Korea announced a plan to build 50,000 housing units in Pyongyang, and this paper analyzes the economic effects and related informal costs of of the project. Currently, Pyongyang is experiencing a significant housing shortage. It is estimated that the number of households in Pyongyang increased by 184,000 between 1994 and 2020, while the estimated new housing supply during the period was only 30,000. Pyongyang's 50,000 housing units construction project is characterized by the goal of improving the living conditions of workers, the application of the new city construction method, and the largest state-led housing construction since the Arduous March. The project is expected to generate economic effects such as increasing workers' motivation to work, increasing tourism resources, and generating income from related industries. On the one hand, a significant portion of the construction cost of the 50,000-unit housing project in Pyongyang is passed on to companies and households in the form of informal cost such as quasi-taxes and manpower mobilization. In addition, there may be congestion in the power supply and sewerage facilities that occur when moving in. If these costs are not taken into account, the feasibility of a housing construction project may not be properly assessed, making it difficult to sustain it in the long term.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

The Characteristics of Natural Hazard due to the Impact of Urbanization in Seoul Metropolitan Area : A potential flood hazard study of Anyang-Cheon Watershed (수도권지역 개발에 따른 자연재해 특징분석 : 안양천 유역분지에서 잠재적 수해특성 분석)

  • 성효현
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.21-42
    • /
    • 1996
  • The Anyang-cheon is one of the Han River tributaries in Seoul Metropolitan area. It is 35.1km long, has a basin area of 287km2 and touches seven cities of Kyounggi Province and part of Seoul. The purpose of this study were 1) to reconstruct the ancient stream network and to investigate the change of landuse in Anyang-cheon watershed between 1957 and 1991,2) to measure the change of the hydrologic ¬acteristics with urbanization, 3) to suggest the institutional solutions to reduce natural hazard as the area has urbanizedThe main results are as follows: 1.Anyang-cheon river basin has experienced the rapid urbanization and industrialization since 1957. Anyang-cheon stream network was oversimplified in the watershed. The total stream length decreased atributaries in the upper part of river basin have eliminated or buried undergrolmd in pipes. 2.Urbanization impacted to all of the area of Anyang-cht'On watershed. Urbanization in Anyang-cheon watershed corresponds to the large portion of flat area, especially flood - prone zone of river side, and the small portion of Greenbelt to constrain urban expantion in cities. 3.The urbanization of Anyang-cheon watershed produces fundamental changes in watershed hydrology. As infiltration is reduced by the creation of extensive pavement, concrete surface, and sewer pipe, runoff moves more quickly from upland to stream. As a result, runoff from the watershed is flashier, increasing flood hazardAs urban area continue to grow we will need to better utilize stream by protecting and enhancing stream systems.otecting and enhancing stream systems.tems.

  • PDF

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF