• Title/Summary/Keyword: 하둡 프레임워크

검색결과 65건 처리시간 0.036초

비용 효율적 맵리듀스 처리를 위한 클러스터 규모 설정 (Scaling of Hadoop Cluster for Cost-Effective Processing of MapReduce Applications)

  • 류우석
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.107-114
    • /
    • 2020
  • 본 논문에서는 하둡 플랫폼에서 비용 효율적 빅데이터 분석을 수행하기 위한 클러스터 규모의 설정 방안을 연구한다. 의료기관의 경우 진료기록의 병원 외부 저장이 가능해짐에 따라 클라우드 기반 빅데이터 분석 요구가 증가하고 있다. 본 논문에서는 대중적으로 많이 사용되고 있는 클라우드 서비스인 아마존 EMR 프레임워크를 분석하고, 비용 효율적으로 하둡을 운용하기 위해 클러스터의 규모를 산정하기 위한 모델을 제시한다. 그리고, 다양한 조건에서의 실험을 통해 맵리듀스의 실행에 영향을 미치는 요인을 분석한다. 이를 통해 비용 대비 처리시간이 가장 효율적인 클러스터를 설정함으로써 빅데이터 분석시 효율성을 증대시킬 수 있다.

하둡을 이용한 3D 프린터용 대용량 데이터 처리 응용 개발 (Development of Application to Deal with Large Data Using Hadoop for 3D Printer)

  • 이강은;김성석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권1호
    • /
    • pp.11-16
    • /
    • 2020
  • 3D 프린팅은 주목받는 신기술의 하나로 많은 관심을 받고 있다. 3D 프린팅을 하기 위해서는 먼저 3D 모델을 생성한 후, 이를 프린터가 인식할 수 있는 G-code로 변환하여야 한다. 대개 3D 모델은 페이셋이라고 하는 조그만 삼각형으로 면을 표현하는데, 모델의 크기나 정밀도에 따라 페이셋의 개수가 매우 많아져서 변환에 많은 시간이 걸리게 된다. 아파치 하둡은 대용량 데이터의 분산처리를 지원하는 프레임워크로서 그 활용 범위가 넓어지고 있다. 본 논문에서는 3D 모델을 G-code로 변환하는 작업을 효율적으로 수행하기 위해 하둡을 활용하고자 한다. 이를 위해 2단계의 분산 알고리즘을 개발하였다. 이 알고리즘은 여러 페이셋들을 먼저 Z축 값으로 정렬한 후, N등분하여 여러 노드에서 독립적으로 분산처리하도록 되어 있다. 실제 분산처리는 전처리 - 하둡의 Map - Shuffling - Reduce의 4 단계를 거쳐 구현되었다. 최종적으로 성능 평가를 위해 테스트용 3D 모델의 크기와 정밀도에 따른 처리 시간의 효율성을 보였다.

토너먼트 기반의 빅데이터 분석 알고리즘 (An Algorithms for Tournament-based Big Data Analysis)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.545-553
    • /
    • 2015
  • 모든 데이터는 그 자체로 가치를 가지고 있지만, 실세계에서 수집되는 데이터들은 무작위적이며 비구조화되어 있다. 따라서 이러한 데이터를 효율적으로 활용하기 위해서 데이터에서 유용한 정보를 추출하기 위한 데이터 변환과 분석 알고리즘들을 사용하게 된다. 이러한 목적으로 사용되는 것이 데이터 마이닝이다. 오늘날에는 데이터를 분석하기 위한 다양한 데이터 마이닝 기법뿐만 아니라, 대용량 데이터를 효율적으로 처리하기 위한 연산 요건과 빠른 분석 시간을 필요로 하고 있다. 대용량 데이터를 저장하기 위하여 하둡이 많이 사용되며, 이 하둡의 데이터를 분석하기 위하여 맵리듀스 프레임워크를 사용한다. 본 논문에서는 단일 머신에서 동작하는 알고리즘을 맵리듀스 프레임워크로 개발할 때 적용의 효율성을 높이기 위한 토너먼트 기반 적용 방안을 제안하였다. 본 방법은 다양한 알고리즘에 적용할 수 있으며, 널리 사용되는 데이터 마이닝 알고리즘인 k-means, k-근접 이웃 분류에 적용하여 그 유용성을 보였다.

Spark 기반 빅데이터 처리를 위한 K-최근접 이웃 연결 (K Nearest Neighbor Joins for Big Data Processing based on Spark)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.1731-1737
    • /
    • 2017
  • K-최근접 이웃 연결(KNN 연결) 알고리즘은 기계학습에서 매우 효과적인 방법으로, 작은 데이터군에 대해서 널리 사용되어 왔다. 데이터의 수가 증가함에 따라, 단일 컴퓨터에서는 메모리와 수행시간의 제약으로 실제적인 응용프로그램에서는 실행하기에 적합하지 못하였다. 최근에는 대규모 데이터 처리를 위해서, 많은 수의 컴퓨터로 이루어진 클러스터에서 실행될 수 있는 맵리듀스 (MapReduce)로 알려진 알고리즘이 널리 사용되고 있다. 하둡은 맵리듀스 알고리즘을 구현한 프레임워크이지만 스파크라고 하는 새로운 프레임워크에 의하여 그 성능이 월등히 개선되었다. 본 논문에서는, 스파크에 기반하여 구현된 KNN 연결 알고리즘을 제안하였으며, 이는 인메모리(In-Memory) 연산 기능의 장점으로 하둡보다 빠르고 보다 효율적일 것으로 기대한다. 실험을 통하여, 수행시간에 영향을 주는 요소들에 관하여 조사하였으며, 제안한 접근 방식의 우수성과 효율성을 확인하였다.

하둡 기반 대규모 작업처리 프레임워크에서의 Adaptive Parallel Computability 기술 연구 (A Study on Adaptive Parallel Computability in Many-Task Computing on Hadoop Framework)

  • 김직수
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1122-1133
    • /
    • 2019
  • 본 연구팀에서는 YARN 기반의 하둡 플랫폼에서 대규모의 태스크들로 구성된 Many-Task Computing(MTC) 응용들을 효율적으로 지원할 수 있는 신규 프레임워크로서 MOHA(Mtc On HAdoop)를 연구/개발해왔다. MTC 응용들은 수십만 개에서 수백만 개 이상의 대규모 태스크들로 구성되고 각 응용별로 자원의 사용 패턴이 다를 수 있기 때문에, 전체적인 시스템 성능 향상을 위해 MOHA-TaskExecutor(MTC 응용 태스크를 실행하는 주체)의 Adaptive Parallel Computability 기술 연구를 수행하였다. 이는 한 번에 하나의 태스크를 실행하던 기존의 처리 모델을 고도화하여 하나의 TaskExecutor가 동시에 여러 개의 태스크들을 실행함으로써 YARN Container의 병렬 컴퓨팅 능력을 극대화하기 위함이다. 이를 위해 각각의 TaskExecutor들이 "독립적이고, 동적으로" 동시에 실행시키는 MTC 응용 태스크들을 조정할 수 있도록 하였으며, 최적의 동시 실행 태스크 숫자를 찾기 위해서 Hill-Climbing 알고리즘을 활용하였다.

하둡 프레임워크에서 한계점 가변으로 확장성이 가능한 P2P 봇넷 탐지 기법 (Scalable P2P Botnet Detection with Threshold Setting in Hadoop Framework)

  • ;;김광조
    • 정보보호학회논문지
    • /
    • 제25권4호
    • /
    • pp.807-816
    • /
    • 2015
  • 최근 10년 전부터 대부분의 조직화된 사이버 공격은 원격의 Botmaster에 의해 통제되는 감염된 컴퓨터들의 거대한 네트워크인 Botnet을 통해 이루어졌다. Botnet 탐지는 상당한 양의 네트워크 트래픽 분석이 필요하기 때문에 탐지 정확도와 시스템 확장성간의 적절한 타협이 요구된다. 본 연구에서는 높은 탐지율을 제공하면서 시스템 확장성이 가능한 하둡 기반의 새로운 P2P Botnet 탐지 기법을 제안한다. 또한, 본 제안 기법은 레이블이 되지 아니한 공격 데이터 뿐만 아니라 암호화된 공격 트래픽에도 적용이 가능한 특징을 가지고 있다.

하둡을 이용한 번호판 인식 시스템 (A Licence Plate Recognition System using Hadoop)

  • 박진우;박호현
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.142-145
    • /
    • 2017
  • 현재 활용되는 영상 데이터가 고화질 고화소 추세이며, 정보통신기술의 발달로 인해 이미지 데이터의 사이즈와 양이 기하급수적으로 증가하고 있다. 이러한 영상데이터를 효율적으로 처리한다면 다양한 컨텐츠로 활용할 수 있지만 기존의 단일컴퓨터로 처리하기에는 늘어나는 데이터를 처리하기에는 한계가 있다. 본 논문은 분산 처리 프레임워크인 Hadoop을 이용하여 번호판 인식 시스템을 제안한다. SequenceFile 포맷을 이용하여 매퍼당 여러 개의 이미지 데이터를 가지고 있는 데이터 블록을 인풋으로 받아 번호판 인식을 수행한다. 실험결과 하둡의 데이터 노드 1개와 비교하여 데이터 노드 16개에서 최대 14.7배의 속도향상을 보였으며, 데이터 셋의 크기를 10배 증가하여도 데이터 노드가 점진적으로 늘어남에 따라 번호판 인식 속도의 강인함을 확인하였다.

다차원 데이터 처리를 위한 맵리듀스 기반의 그리드 파일 생성기법에 관한 연구 (A Study on The Grid File Construction Method based on MapReduce for Multidimensional Data Processing)

  • 정주혁;이상호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.77-80
    • /
    • 2014
  • 최근 컴퓨터와 인터넷 이용의 확산, 스마트폰을 포함한 스마트 기기의 보급과 소셜 네트워크 이용의 확대, 위치 기반의 다양한 서비스 확대 등으로 처리해야 할 데이터 크기가 증가하는 추세이다. 이에 따라 대용량 데이터에 대한 처리가 큰 이슈로 떠오르고 있다. 그로 인해 대용량 데이터 처리를 위한 큰 규모의 분산 컴퓨팅 환경을 지원하는 프레임워크인 하둡이 개발되었으며 많은 기업에서 이를 활용하고 있는 추세이다. 하지만 대용량 데이터 중 영상, 의료, 센서 데이터 등 다차원 데이터 처리에 관한 연구는 미비한 상태이다. 기존의 다차원 데이터 처리를 위해 다양한 다차원 인덱스가 제안되었지만, 대용량 다차원 데이터 처리는 단일머신에서는 비효율적인 단점이 있다. 본 논문에서는 다차원 인덱스 기법인 그리드 파일을 하둡의 분산 병렬 처리 모델인 맵리듀스를 기반으로 생성하는 기법을 제안한다. 또한 앞서 생성된 그리드 파일을 가지고 맵리듀스를 이용한 질의처리 방법을 제안 한다. 이로 인해 단일머신에서의 그리드 파일 생성을 병렬처리 함으로써 생성 시간을 단축시키고 질의 처리 또한 맵리듀스를 이용하여 병렬 처리 함으로써 질의 시간 단축을 예상한다.

맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법 (A Hot-Data Replication Scheme Based on Data Access Patterns for Enhancing Processing Speed of MapReduce)

  • 손인국;류은경;박준호;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.21-27
    • /
    • 2013
  • 최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리 프레임워크로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스 에서의 태스크 할당은 데이터의 지역성(locality)를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스 에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 지역성으로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 지역성을 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 감소하는 것을 확인하였다.

노드의 동적 다운 스케일링을 지원하는 분산 클러스터 시스템의 설계 및 구현 (Design and Implementation of Distributed Cluster Supporting Dynamic Down-Scaling of the Cluster)

  • 류우석
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.361-366
    • /
    • 2023
  • 빅데이터의 분산 처리를 수행하기 위한 대표적인 프레임워크인 하둡은 클러스터 규모를 수천 개 이상의 노드까지 증가시켜서 병렬분산 처리 성능을 높일 수 있는 장점이 있다. 하지만 클러스터의 규모를 줄이는 것은 결함이 있거나 성능이 저하된 노드들을 영구적으로 퇴역시키는 수준에서 제한되어 있음에 따라 소규모 클러스터에서 여러 노드들을 유연하게 운용하기에는 한계가 있다. 본 논문에서는 하둡 클러스터에서 노드를 제거할 때 발생하는 문제점을 논의하고 분산 클러스터의 규모를 탄력적으로 관리하기 위한 동적 다운 스케일링 기법을 제안한다. 일시적 다운스케일을 목적으로 노드를 제거할 때 완전히 퇴역시키는 것이 아니라 일시적으로 해제하고 필요시 다시 연결할 수 있도록 함으로써 동적 다운 스케일링을 지원할 수 있도록 시스템과 인터페이스를 설계하고 구현하였다. 실험 결과 성능저하 없이 효과적으로 다운 스케일링을 수행하는 것을 검증하였다.