• Title/Summary/Keyword: 하둡 프레임워크

Search Result 65, Processing Time 0.039 seconds

"Multi-use Data Platform" 하둡 2.0과 관련 데이터 처리 프레임워크 기술

  • Kim, Jik-Su
    • Broadcasting and Media Magazine
    • /
    • v.22 no.4
    • /
    • pp.11-17
    • /
    • 2017
  • 본 고에서는 멀티 응용 데이터 플랫폼으로 진화하고 있는 하둡(Hadoop) 2.0의 주요 특징과 관련된 다양한 데이터 처리 프레임워크들에 대해서 기술하고자 한다. 기존의 맵리듀스(MapReduce) 기반의 배치 처리(Batch Processing)에 최적화되어 있던 하둡 1.0과는 달리, YARN의 등장과 함께 시작된 하둡 2.0 플랫폼은 다양한 형태의 데이터 처리 워크플로우들(Batch, Interactive, Streaming 등)을 지원할 수 있는 기능을 제공하고 있다. 또한, 최근에는 고성능컴퓨팅 분야에서 주로 활용되던 기술들도 하둡 2.0 플랫폼에서 지원되고 있다. 마지막으로 YARN 어플리케이션 개발 사례로서 본 연구팀에서 개발 중에 있는 Many-Task Computing (MTC) 응용을 위한 신규 데이터 처리 프레임워크를 소개한다.

A Study on the Design of Ambari Service for Lustre Parallel File System Auto Provisioning (Lustre 병렬파일시스템 오토 프로비저닝을 위한 Ambari 서비스 설계에 관한 연구)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Byun, Eunkyu;Nam, Dukyun
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.45-47
    • /
    • 2017
  • 하둡은 대표적인 빅데이터 처리 프레임워크로 널리 사용되고 있지만 하둡 어플리케이션은 고성능컴퓨팅 환경에서 하둡 분산파일시스템이 아닌 러스터 병렬 파일시스템 위에서도 수행될 수 있다. 그러나 이를 위해서 추가적으로 러스터 병렬파일시스템을 구축하고 관리하는 것은 시간 소모적인 업무가 될 수 있다. 본 연구는 러스터 병렬파일시스템의 오토 프로비저닝을 위한 암바리 서비스의 설계 방안에 대해서 제안한다. 암바리는 하둡 클러스터의 프로비저닝, 관리, 모니터링을 위한 운영 관리 프레임워크이며 운영자의 필요에 따라서 확장할 수 있는 서비스 프레임워크를 제공한다. 본 연구에서는 암바리를 통해서 러스터 병렬파일시스템을 오토 프로비저닝하고 관리하기 위한 확장 서비스를 설계하였으며 서비스를 위한 컴포넌트와 각 컴포넌트별 중요한 기능 사항에 대해서 논하였다.

Large-scale Spatial Reasoning using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론 방식)

  • Nam, Sang-Ha;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.769-772
    • /
    • 2014
  • Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.

Design and Implementation of Data Access Control in Hadoop (하둡에서 데이터 접근 제어 설계 및 구현)

  • Kim, Heeju;Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.700-703
    • /
    • 2014
  • 최근 이슈가 되고 있는 하둡(hadoop) 패키지에 접목하여 많은 프로젝트들이 생겨나고 있으며, 이들 중 주요하게 떠오르고 있는 분야가 접근 제어 기술이다. 특히, 인터넷의 발전과 스마트 기기 사용자가 늘어남에 따라 데이터의 양이 증가하여, 데이터의 소유자와 사용자의 필요에 의한 접근 제어 기술이 필요하게 되었다. 본 논문에서는 접근 제어 기술의 필요성을 기반으로 HDFS(Hadoop Distributed File System, 하둡 분산 파일 시스템) 기반의 새로운 데이터 접근 제어 프레임워크를 제안한다. 제안하는 방법은 새로운 메타데이터 저장 모듈과 접근 관리 모듈을 만들어 데이터 접근 제어프레임워크를 구성함으로써, 빅데이터 플랫폼을 사용하는 사용자들을 위한 접근 제어 기능을 제공한다. 제안한 프레임워크는 기존 플랫폼에 추가적인 설치가 필요 없도록 하둡 내부에 설계하여 향후 활용도가 높을 것이라 기대된다.

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

Improving Hadoop security using TPM (TPM을 이용한 하둡 보안의 강화)

  • Park, Seung-Je;Kim, Hee-Youl
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.233-235
    • /
    • 2012
  • 하둡 프레임워크는 현재 오픈소스 기반의 클라우드 인프라의 사실상 표준이다. 최초 하둡은 보안요소를 고려하지 않고 설계 되었지만 현재는 강력한 인증프로토콜인 커버로스를 사용하는 등의 보안 기능이 추가되었다. 하둡 보안은 꽤 안전해 보이지만, 클라우드 컴퓨팅의 범용적인 사용의 가장 중요한 요소는 보안인 것을 감안해보면 클라우드 제공자는 기존보다 더욱 강력한 보안 레벨을 고객에게 보장하여야 한다. 본 논문에서는 하둡 보안의 한계점을 제시하고 하드웨어 보안칩 TPM(Trusted Platform Module)을 이용한 해결방안을 제시한다.

A study of MapReduce Algorithm for Bigdata (빅데이터 처리를 위한 맵리듀스 연구)

  • Kim, Man-Yun;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.341-342
    • /
    • 2014
  • 지난 10년간 데이터의 폭발적인 증가로 우리는 빅데이터 시대를 맞이하게 되었다. 특히, 최근 몇 년 사이 소셜 네트워크의 발전으로 인해 발생하는 데이터의 양이 증가하면서, 이를 처리하기 위한 시스템으로 하둡이 등장하였다. 이전에는 저장 및 처리할 수 없었던 대용량 데이터를 오픈소스인 하둡의 등장으로 누구나가 대용량 데이터를 처리할 수 있는 시스템을 운영할 수 있게 된 것이다. 대규모 처리 분석을 위한 소프트웨어 프레임워크인 하둡은 클라우드 컴퓨팅의 대표적인 기술로 널리 사용되고 있다. 하둡은 크게 데이터의 저장을 담당하는 HDFS(Hadoop Distribute File System)와 데이터를 처리하는 맵리듀스로 나뉜다. 본 논문에서는 기존의 MapReduce와 차세대 맵리듀스로 불리는 YARN을 비교 분석하고 맵리듀스의 용도와 효율적인 활용방안을 제시한다.

  • PDF

The Design of Method for Efficient Processing of Small Files in the Distributed System based on Hadoop Framework (하둡 프레임워크 기반 분산시스템 내의 작은 파일들을 효율적으로 처리하기 위한 방법의 설계)

  • Kim, Seung-Hyun;Kim, Young-Geun;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1115-1122
    • /
    • 2015
  • Hadoop framework was designed to be suitable for processing very large files. On the other hand, when processing the Small Files, it waste the resource of a distributed system, and occur performance degradation. It is shown noticeable the more the Small Files. This problem is caused by the Small Files, it can be solved through the merging of associated Small Files. But a way of merging of Small Files has some limited point. in this paper, examines existing limit of merging method, design merging method Small Files for effective process.

Management of Distributed Nodes for Big Data Analysis in Small-and-Medium Sized Hospital (중소병원에서의 빅데이터 분석을 위한 분산 노드 관리 방안)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.376-377
    • /
    • 2016
  • Performance of Hadoop, which is a distributed data processing framework for big data analysis, is affected by several characteristics of each node in distributed cluster such as processing power and network bandwidth. This paper analyzes previous approaches for heterogeneous hadoop clusters, and presents several requirements for distributed node clustering in small-and-medium sized hospitals by considering computing environments of the hospitals.

  • PDF

Implementation of a Raspberry-Pi-Sensor Network (라즈베리파이 센서 네트워크 구현)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.915-916
    • /
    • 2014
  • With the upcoming era of internet of things, the study of sensor network has been paid attention. Raspberry pi is a tiny versatile computer system which is able to act as a sensor node in hadoop cluster network. In this paper, we deployed 5 Raspberry pi's to construct an experimental testbed of hadoop sensor network with 5-node map-reduce hadoop software framework. We compared and analyzed the network architecture in terms of efficiency, resource management, and throughput using various parameters. We used a learning machine with support vector machine as test workload. In our experiments, Raspberry pi fulfilled the role of distributed computing sensor node in the sensor network.

  • PDF