• Title/Summary/Keyword: 하둡 분산

Search Result 138, Processing Time 0.022 seconds

Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem (러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Huh, Taesang;Hwang, Soonwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.561-566
    • /
    • 2015
  • Hadoop is becoming widely adopted in scientific and commercial areas as an open-source distributed data processing framework. Recently, for real-time processing and analysis of data, an attempt to apply high-performance computing technologies to Hadoop is being made. In this paper, we have expanded the Hadoop Filesystem library to support Lustre, which is a popular high-performance parallel distributed filesystem, and implemented the Hadoop MapReduce execution environment over the Lustre filesystem. We analysed Hadoop MapReduce over Lustre by using Hadoop standard benchmark tools. We found that Hadoop MapReduce over Lustre execution has a performance 2-13 times better than a typical Hadoop MapReduce execution.

Management of Distributed Nodes for Big Data Analysis in Small-and-Medium Sized Hospital (중소병원에서의 빅데이터 분석을 위한 분산 노드 관리 방안)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.376-377
    • /
    • 2016
  • Performance of Hadoop, which is a distributed data processing framework for big data analysis, is affected by several characteristics of each node in distributed cluster such as processing power and network bandwidth. This paper analyzes previous approaches for heterogeneous hadoop clusters, and presents several requirements for distributed node clustering in small-and-medium sized hospitals by considering computing environments of the hospitals.

  • PDF

Performance Analysis of Distributed Hadoop Systems (분산 하둡 시스템의 성능 비교 분석)

  • Bae, Byoung-Jin;Kim, Young-Joo;Kim, Young-Kuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.479-482
    • /
    • 2014
  • Nowadays open-source hadoop systems have been using widely to efficiently manage a fast-growing big data. Hadoop systems consist of distributed file processing system called HDFS (Hadoop Distributed File System) and distributed parallel processing system called MapReduce. The MapReduce reads and processes big data from HDFS and then processed results are written in HDFS again by the MapReduce. Such a processing method has different system structure respectively according to hadoop version. Therefore, this paper shows analysis results for performance of hadoop systems. For this, we devise a way which monitors hadoop systems and measure occurrence frequency of processes, threads, and variables generated in hadoop system itself using the devised way. So, by using the measured results as analysis indicator, we help the indicator predict inner performance of hadoop systems.

  • PDF

Delayed Block Replication Scheme of Hadoop Distributed File System for Flexible Management of Distributed Nodes (하둡 분산 파일시스템에서의 유연한 노드 관리를 위한 지연된 블록 복제 기법)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.367-374
    • /
    • 2017
  • This paper discusses management problems of Hadoop distributed node, which is a platform for big data processing, and proposes a novel technique for enabling flexible node management of Hadoop Distributed File System. Hadoop cannot configure Hadoop cluster dynamically because it judges temporarily unavailable nodes as a failure. Delayed block replication scheme proposed in this paper delays the removal of unavailable node as much as possible so as to be easily rejoined. Experimental results show that the proposed scheme increases flexibility of node management with little impact on distributed processing performance when the cluster size changes.

Initial Authentication Protocol of Hadoop Distribution System based on Elliptic Curve (타원곡선기반 하둡 분산 시스템의 초기 인증 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.253-258
    • /
    • 2014
  • Recently, the development of cloud computing technology is developed as soon as smartphones is increases, and increased that users want to receive big data service. Hadoop framework of the big data service is provided to hadoop file system and hadoop mapreduce supported by data-intensive distributed applications. But, smpartphone service using hadoop system is a very vulnerable state to data authentication. In this paper, we propose a initial authentication protocol of hadoop system assisted by smartphone service. Proposed protocol is combine symmetric key cryptography techniques with ECC algorithm in order to support the secure multiple data processing systems. In particular, the proposed protocol to access the system by the user Hadoop when processing data, the initial authentication key and the symmetric key instead of the elliptic curve by using the public key-based security is improved.

A Study on Security Improvement in Hadoop Distributed File System Based on Kerberos (Kerberos 기반 하둡 분산 파일 시스템의 안전성 향상방안)

  • Park, So Hyeon;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.803-813
    • /
    • 2013
  • As the developments of smart devices and social network services, the amount of data has been exploding. The world is facing Big data era. For these reasons, the Big data processing technology which is a new technology that can handle such data has attracted much attention. One of the most representative technologies is Hadoop. Hadoop Distributed File System(HDFS) designed to run on commercial Linux server is an open source framework and can store many terabytes of data. The initial version of Hadoop did not consider security because it only focused on efficient Big data processing. As the number of users rapidly increases, a lot of sensitive data including personal information were stored on HDFS. So Hadoop announced a new version that introduces Kerberos and token system in 2009. However, this system is vulnerable to the replay attack, impersonation attack and other attacks. In this paper, we analyze these vulnerabilities of HDFS security and propose a new protocol which complements these vulnerabilities and maintains the performance of Hadoop.

Secure Authentication Protocol in Hadoop Distributed File System based on Hash Chain (해쉬 체인 기반의 안전한 하둡 분산 파일 시스템 인증 프로토콜)

  • Jeong, So Won;Kim, Kee Sung;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.831-847
    • /
    • 2013
  • The various types of data are being created in large quantities resulting from the spread of social media and the mobile popularization. Many companies want to obtain valuable business information through the analysis of these large data. As a result, it is a trend to integrate the big data technologies into the company work. Especially, Hadoop is regarded as the most representative big data technology due to its terabytes of storage capacity, inexpensive construction cost, and fast data processing speed. However, the authentication token system of Hadoop Distributed File System(HDFS) for the user authentication is currently vulnerable to the replay attack and the datanode hacking attack. This can cause that the company secrets or the personal information of customers on HDFS are exposed. In this paper, we analyze the possible security threats to HDFS when tokens or datanodes are exposed to the attackers. Finally, we propose the secure authentication protocol in HDFS based on hash chain.

A Dynamic Prefetchiong Scheme for Handling Small Files based on Hadoop Distributed File System (하둡 분산 파일 시스템 기반 소용량 파일 처리를 위한 동적 프리페칭 기법)

  • Yoo, Sang-Hyun;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.329-332
    • /
    • 2014
  • 클라우드 컴퓨팅이 활성화 됨에 따라 기존의 파일 시스템과는 다른 대용량 파일 처리에 효율적인 분산파일시스템의 요구가 대두 되었다. 그 중에 하둡 분산 파일 시스템(Hadoop Distribute File System, HDFS)은 기존의 분산파일 시스템과는 달리 가용성과 내고장성을 보장하고, 데이터 접근 패턴을 스트리밍 방식으로 지원하여 대용량 파일을 효율적으로 저장할 수 있다. 이러한 장점 때문에, 클라우드 컴퓨팅의 파일시스템으로 대부분 채택하고 있다. 하지만 실제 HDFS 데이터 집합에서 대용량 파일 보다 소용량 파일이 차지하는 비율이 높으며, 이러한 다수의 소 용량 파일은 데이터 처리에 있어 높은 처리비용을 초래 할 뿐 만 아니라 메모리 성능에 악영향을 끼친다. 하지만 소 용량 파일을 프리패칭 함으로서 이러한 문제점을 해결 할 수 있다. HDFS의 데이터 프리페칭은 기존의 데이터 프리페칭의 기법으로는 적용하기 어려워 HDFS를 위한 데이터 프리패칭 기법을 제안한다.

  • PDF

A Secure Model for Reading and Writing in Hadoop Distributed File System and its Evaluation (하둡 분산파일시스템에서 안전한 쓰기, 읽기 모델과 평가)

  • Pang, Sechung;Ra, Ilkyeun;Kim, Yangwoo
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.55-64
    • /
    • 2012
  • Nowadays, as Cloud computing becomes popular, a need for a DFS(distributed file system) is increased. But, in the current Cloud computing environments, there is no DFS framework that is sufficient to protect sensitive private information from attackers. Therefore, we designed and proposed a secure scheme for distributed file systems. The scheme provides confidentiality and availability for a distributed file system using a secret sharing method. In this paper, we measured the speed of encryption and decryption for our proposed method, and compared them with that of SEED algorithm which is the most popular algorithm in this field. This comparison showed the computational efficiency of our method. Moreover, the proposed secure read/write model is independent of Hadoop DFS structure so that our modified algorithm can be easily adapted for use in the HDFS. Finally, the proposed model is evaluated theoretically using performance measurement method for distributed secret sharing model.

Measuring Hadoop Optimality by Lorenz Curve (로렌츠 커브를 이용한 하둡 플랫폼의 최적화 지수)

  • Kim, Woo-Cheol;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.249-261
    • /
    • 2014
  • Ever increasing "Big data" can only be effectively processed by parallel computing. Parallel computing refers to a high performance computational method that achieves effectiveness by dividing a big query into smaller subtasks and aggregating results from subtasks to provide an output. However, it is well-known that parallel computing does not achieve scalability which means that performance is improved linearly by adding more computers because it requires a very careful assignment of tasks to each node and collecting results in a timely manner. Hadoop is one of the most successful platforms to attain scalability. In this paper, we propose a measurement for Hadoop optimization by utilizing a Lorenz curve which is a proxy for the inequality of hardware resources. Our proposed index takes into account the intrinsic overhead of Hadoop systems such as CPU, disk I/O and network. Therefore, it also indicates that a given Hadoop can be improved explicitly and in what capacity. Our proposed method is illustrated with experimental data and substantiated by Monte Carlo simulations.