Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.218-220
/
2012
인터넷 활용과 웹 어플리케이션의 개발이 증가함에 따라 처리해야하는 데이터의 양도 또한 증가하고 있다. 대량의 데이터를 효과적으로 처리하기 위한 방법 중 하나로 병렬처리 프로그래밍 모델인 맵리듀스가 있다. 하둡은 맵리듀스의 오픈소스 구현으로 대량의 데이터를 병렬로 처리하는 무료 자바 소프트웨어 프레임워크이다. 분산 파일 시스템을 사용하는 하둡에서는 처리하는 데이터가 다른 노드에 위치하는 데이터 로컬리티 문제가 전체 작업 수행시간의 증가를 야기하는 문제가 있다. 본 논문에서는 하둡에서의 데이터 로컬리티 문제를 해결하기 위한 데이터 복제기법을 제안한다. 제안하는 데이터 복제기법에서는 1) 라그랑지 보간법을 사용하여 과거 접근수를 이용한 미래 접근수를 예측하고, 2) 예측된 값을 Threshold값으로 설정하고, 3) 데이터 로컬리티 문제가 발생하였을 때, 복제사본을 생성할 것인지 캐시를 생성할 것인지를 결정하여 복제 사본의 수를 최적화 한다. 실험을 통해 단순히 복제사본 수를 증가시킴으로써 데이터 로컬리티를 향상을 이루어도 작업 완료시간이 감소하는 것이 아니라는 결과를 볼 수 있었고, 오버 런치로 인한 작업 완료시간 증가를 줄이기 위해 데이터 복제사본 수 최적화의 필요성을 확인할 수 있었다.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.1
/
pp.107-114
/
2020
This paper studies a method for estimating the scale of a Hadoop cluster to process big data as a cost-effective manner. In the case of medical institutions, demands for cloud-based big data analysis are increasing as medical records can be stored outside the hospital. This paper first analyze the Amazon EMR framework, which is one of the popular cloud-based big data framework. Then, this paper presents a efficiency model for scaling the Hadoop cluster to execute a Mapreduce application more cost-effectively. This paper also analyzes the factors that influence the execution of the Mapreduce application by performing several experiments under various conditions. The cost efficiency of the analysis of the big data can be increased by setting the scale of cluster with the most efficient processing time compared to the operational cost.
In the era of big data, algorithms for the existing IT environment cannot accept on a distributed architecture such as hadoop. Thus, new distributed algorithms which apply a distributed framework such as MapReduce are needed. Lloyd's algorithm commonly used for vector quantization is developed using MapReduce recently. In this paper, we proposed a decombined distributed VQ codebook generation algorithm based on a distributed VQ codebook generation algorithm using MapReduce to get a result more fast. The result of applying the proposed algorithm to big data showed higher performance than the conventional method.
While all of the data has a value in itself, most of the data that is collected in the real world is a random and unstructured. In order to extract useful information from the data, it is need to use the data transform and analysis algorithms. Data mining is used for this purpose. Today, there is not only need for a variety of data mining techniques to analyze the data but also need for a computational requirements and rapid analysis time for huge volume of data. The method commonly used to store huge volume of data is to use the hadoop. A method for analyzing data in hadoop is to use the MapReduce framework. In this paper, we developed a tournament-based MapReduce method for high efficiency in developing an algorithm on a single machine to the MapReduce framework. This proposed method can apply many analysis algorithms and we showed the usefulness of proposed tournament based method to apply frequently used data mining algorithms k-means and k-nearest neighbor classification.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.191-193
/
2016
본 논문에서는 SSD 저장장치를 포함하는 하둡의 Iterative Processing에 대한 성능 분석 결과를 소개한다. 하둡은 맵 리듀스 병렬 프로그래밍 모델을 통해 Batch Processing에 특화된 구조를 가지고 있는 프레임 워크이다. 이는 병렬/분산 환경에서 큰 성능향상을 보장하지만, 반복 작업을 수행하는 Iterative Processing에 대하여는 성능이 낮아지는 문제가 존재하고 있다. 이에 본 논문에서는 점차 낮아지는 가격으로 인해 하둡시스템에 적용 가능성이 타진되는 SSD를 통해 반복 작업의 성능이슈를 해결할 수 있는지 확인하고, SSD를 통한 성능향상의 요소가 존재하는지 알아보고자 실험을 진행하였다. 실험에서는 Batch Processing인 word count와 Iterative Processing인 Page Rank 알고리즘을 MapReduce로 구현하고 데이터 크기에 따른 성능 향상도를 측정하였고, SSD 추가와 같은 하드웨어적인 성능을 통한 하둡의 반복 작업은 큰 효율을 기대하기가 어렵다는 결론을 보였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.376-377
/
2016
Performance of Hadoop, which is a distributed data processing framework for big data analysis, is affected by several characteristics of each node in distributed cluster such as processing power and network bandwidth. This paper analyzes previous approaches for heterogeneous hadoop clusters, and presents several requirements for distributed node clustering in small-and-medium sized hospitals by considering computing environments of the hospitals.
KIPS Transactions on Software and Data Engineering
/
v.3
no.8
/
pp.293-298
/
2014
Detecting and understanding the changes between RDF data is crucial in the evolutionary process, synchronization system, and versioning system on the web of data. However, current researches on detecting changes still remain unsatisfactory in that they did neither consider the large scale of RDF data nor accurately produce the RDF deltas. In this paper, we propose a scalable and effective change detection using a MapReduce framework which has been used in many fields to process and analyze large volumes of data. In particular, we focus on the structure-based change detection that adopts a strategy for the comparison of blank nodes in RDF data. To achieve this, we employ a method which is composed of two MapReduce jobs. First job partitions the triples with blank nodes by grouping each triple with the same blank node ID and then computes the incoming path to the blank node. Second job partitions the triples with the same path and matchs blank nodes with the Hungarian method. In experiments, we show that our approach is more accurate and effective than the previous approach.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.479-482
/
2014
Nowadays open-source hadoop systems have been using widely to efficiently manage a fast-growing big data. Hadoop systems consist of distributed file processing system called HDFS (Hadoop Distributed File System) and distributed parallel processing system called MapReduce. The MapReduce reads and processes big data from HDFS and then processed results are written in HDFS again by the MapReduce. Such a processing method has different system structure respectively according to hadoop version. Therefore, this paper shows analysis results for performance of hadoop systems. For this, we devise a way which monitors hadoop systems and measure occurrence frequency of processes, threads, and variables generated in hadoop system itself using the devised way. So, by using the measured results as analysis indicator, we help the indicator predict inner performance of hadoop systems.
In this paper, we propose a MapReduce-supported clustering technique for collecting and classifying distributed workflow enactment event logs as a preprocessing tool. Especially, we would call the distributed workflow enactment event logs as Workflow BIG-Logs, because they are satisfied with as well as well-fitted to the 5V properties of BIG-Data like Volume, Velocity, Variety, Veracity and Value. The clustering technique we develop in this paper is intentionally devised for the preprocessing phase of a specific workflow process mining and analysis algorithm based upon the workflow BIG-Logs. In other words, It uses the Map-Reduce framework as a Workflow BIG-Logs processing platform, it supports the IEEE XES standard data format, and it is eventually dedicated for the preprocessing phase of the ${\rho}$-Algorithm that is a typical workflow process mining algorithm based on the structured information control nets. More precisely, The Workflow BIG-Logs can be classified into two types: of activity-based clustering patterns and performer-based clustering patterns, and we try to implement an activity-based clustering pattern algorithm based upon the Map-Reduce framework. Finally, we try to verify the proposed clustering technique by carrying out an experimental study on the workflow enactment event log dataset released by the BPI Challenges.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.9
/
pp.1731-1737
/
2017
K Nearest Neighbor Join (KNN Join) is a simple yet effective method in machine learning. It is widely used in small dataset of the past time. As the number of data increases, it is infeasible to run this model on an actual application by a single machine due to memory and time restrictions. Nowadays a popular batch process model called MapReduce which can run on a cluster with a large number of computers is widely used for large-scale data processing. Hadoop is a framework to implement MapReduce, but its performance can be further improved by a new framework named Spark. In the present study, we will provide a KNN Join implement based on Spark. With the advantage of its in-memory calculation capability, it will be faster and more effective than Hadoop. In our experiments, we study the influence of different factors on running time and demonstrate robustness and efficiency of our approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.