• Title/Summary/Keyword: 하둡, 스파크

Search Result 28, Processing Time 0.033 seconds

A performance comparison for Apache Spark platform on environment of limited memory (제한된 메모리 환경에서의 아파치 스파크 성능 비교)

  • Song, Jun-Seok;Kim, Sang-Young;Lee, Jung-June;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.67-68
    • /
    • 2016
  • 최근 빅 데이터를 이용한 시스템들이 여러 분야에서 활발히 이용되기 시작하면서 대표적인 빅데이터 저장 및 처리 플랫폼인 하둡(Hadoop)의 기술적 단점을 보완할 수 있는 다양한 분산 시스템 플랫폼이 등장하고 있다. 그 중 아파치 스파크(Apache Spark)는 하둡 플랫폼의 속도저하 단점을 보완하기 위해 인 메모리 처리를 지원하여 대용량 데이터를 효율적으로 처리하는 오픈 소스 분산 데이터 처리 플랫폼이다. 하지만, 아파치 스파크의 작업은 메모리에 의존적이므로 제한된 메모리 환경에서 전체 작업 성능은 급격히 낮아진다. 본 논문에서는 메모리 용량에 따른 아파치 스파크 성능 비교를 통해 아파치 스파크 동작을 위해 필요한 적정 메모리 용량을 확인한다.

  • PDF

A Study on Collaborative Filtering Recommendation Algorithm base on Hadoop and Spark (하둡 및 스파크 기반의 협력 필터링 추천 알고리즘 연구)

  • Jung, Young Gyo;Kim, Sang Young;Lee, Jung-June;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.

  • PDF

Apache Spark and Map Reduce with Performance Analysis using K-Means (K-means를 이용한 아파치 스파크 및 맵 리듀스 성능 분석)

  • Jung, Young-Gyo;Jung, Dong-Young;Song, Jun-Seok;You, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.77-78
    • /
    • 2016
  • 빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.

  • PDF

A Design of Spark Based System for Extracting Hierarchical Relationships from RDB View Definitions (RDB 뷰 정의로부터 상하위 관계를 추출하는 스파크 기반 시스템 설계)

  • Ahn, Jinhyun;Im, Dong-Hyuk;Kim, Hong-Gee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.80-81
    • /
    • 2016
  • 기계가 읽을 수 있는 형태의 정보로 구성된 시맨틱웹 환경이 주목을 받고 있다. 온톨로지는 정보를 구조적으로 표현하는 방법론의 일종으로 시맨틱웹에서 중요한 역할을 한다. 사람이 일일이 정보를 처음부터 온톨로지로 만드는 것은 쉽지 않기 때문에 관계형 데이터베이스를 온톨로지로 자동으로 변환하는 연구가 진행되고 있다. 최근 하둡을 활용하여 관계형 데이터베이스의 뷰 정의로부터 상하위 관계를 추출하는 연구가 제안 됐다. 하지만, 하둡은 디스크 기반이기 때문에 속도가 느리다는 단점이 있다. 본 논문에서는 관계형 데이터베이스의 뷰 정의로부터 상하위 관계를 추출하는 과정을 인메모리 분산 처리 시스템인 스파크에서 수행하는 방법을 제안한다. 주어진 뷰 정의에 있는 테이블 이름으로 분산시킨 후 각각에서 독립적으로 상하위 관계를 추출한다.

Design of a Large-Scale Qualitative Spatial Reasoner Based on Hadoop Clusters (하둡 클러스터 기반의 대용량 정성 공간 추론기의 설계)

  • Kim, Jonghwan;Kim, Jonghoon;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1316-1319
    • /
    • 2015
  • 본 논문에서는 대규모 분산 병렬 컴퓨팅 환경인 하둡 클러스터 시스템을 이용하여, 공간 객체들 간의 위상 관계를 효율적으로 추론하는 대용량 정성 공간 추론기를 제안한다. 본 논문에서 제안하는 공간 추론기는 추론 작업의 순차성과 반복성을 고려하여, 작업들 간의 디스크 입출력을 최소화할 수 있는 인-메모리 기반의 아파치 스파크 프레임워크를 이용하여 개발하였다. 따라서 본 추론기에서는 추론의 대상이 되는 대용량 공간 지식들을 아파치 스파크의 분산 데이터 집합 형태인 PairRDD와 RDD로 변환하고, 이들에 대한 데이터 오퍼레이션들로 추론 작업들을 구현하였다. 또한, 본 추론기에서는 추론 시간의 많은 부분을 차지하는 이행 관계 추론에 필요한 조합표를 효과적으로 축소함으로써, 공간 추론 작업의 성능을 크게 향상시켰다. 대용량의 공간 지식 베이스를 이용한 성능 분석 실험을 통해, 본 논문에서 제안한 정성 공간 추론기의 높은 성능을 확인할 수 있었다.

Performance Factor of Distributed Processing of Machine Learning using Spark (스파크를 이용한 머신러닝의 분산 처리 성능 요인)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2021
  • In this paper, we study performance factor of machine learning in the distributed environment using Apache Spark and presents an efficient distributed processing method through experiments. This work firstly presents performance factor when performing machine learning in a distributed cluster by classifying cluster performance, data size, and configuration of spark engine. In addition, performance study of regression analysis using Spark MLlib running on the Hadoop cluster is performed while changing the configuration of the node and the Spark Executor. As a result of the experiment, it was confirmed that the effective number of executors was affected by the number of data blocks, but depending on the cluster size, the maximum and minimum values were limited by the number of cores and the number of worker nodes, respectively.

S-PARAFAC: Distributed Tensor Decomposition using Apache Spark (S-PARAFAC: 아파치 스파크를 이용한 분산 텐서 분해)

  • Yang, Hye-Kyung;Yong, Hwan-Seung
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2018
  • Recently, the use of a recommendation system and tensor data analysis, which has high-dimensional data, is increasing, as they allow us to analyze the tensor and extract potential elements and patterns. However, due to the large size and complexity of the tensor, it needs to be decomposed in order to analyze the tensor data. While several tools are used for tensor decomposition such as rTensor, pyTensor, and MATLAB, since such tools run on a single machine, they are unable to handle large data. Also, while distributed tensor decomposition tools based on Hadoop can handle a scalable tensor, its computing speed is too slow. In this paper, we propose S-PARAFAC, which is a tensor decomposition tool based on Apache Spark, in distributed in-memory environments. We converted the PARAFAC algorithm into an Apache Spark version that enables rapid processing of tensor data. We also compared the performance of the Hadoop based tensor tool and S-PARAFAC. The result showed that S-PARAFAC is approximately 4~25 times faster than the Hadoop based tensor tool.

Performance evaluation and prediction for number of slave nodes in Spark (스파크 기반 분산 환경에서 슬레이브 노드의 개수에 따른 성능 분석과 예측)

  • Bak, Bongwoo;Myung, Rohyoung;Chung, KwangSik;Yu, Heonchang;Choi, Sukyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.94-96
    • /
    • 2017
  • 최근 빅 데이터를 이용한 시스템들이 여러 분야에서 활발히 이용되기 시작하면서 대표적인 빅 데이터 저장 및 처리 플랫폼인 하둡(Hadoop)의 기술적 단점을 보완할 수 있는 분산 시스템 플랫폼 스파크(Apache Spark)가 등장하였다. 본 플랫폼을 바탕으로 슬레이브 노드들에게 작업을 분산하여 대용량 연산을 수행한다. 하지만 요구하는 성능을 내기 위해 어느 정도 규모의 슬레이브 노드가 필요한지, 각각의 컴퓨팅 능력은 얼마나 필요한지를 예측하는데 어려움이 있다. 본 논문에서는 스파크에서 원하는 성능을 내기 위해 어떤 조건을 충족해야 하는지, 현재 환경에서는 어느 정도 성능을 낼 수 있는지 실험을 통해 모델을 만들어 예측한다.

Detection of Abnormal Ship Operation using a Big Data Platform based on Hadoop and Spark (하둡 및 스파크 기반 빅데이터 플랫폼을 이용한 선박 운항 효율 이상 상태 분석)

  • Lee, Taehyeon;Yu, Eun-seop;Park, Kaemyoung;Yu, Seongsang;Park, Jinpyo;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.82-90
    • /
    • 2019
  • To reduce emissions of marine pollutants, regulations are being tightened around the world. In the shipbuilding and shipping industries, various countermeasures are being put forward. As there are limits to applying countermeasures to ships already in operation, however, it is necessary for these vessels to use energy efficiently. The sensors installed on ships typically gather a very large amount of data, and thus a big data platform is needed to manage and analyze the data. In this paper, we build a big data analysis platform based on Hadoop and Spark, and we present a method to detect abnormal ship operation using the platform. We also utilize real ship operation data to discuss the data analysis experiment.

A System Design for Real-Time Monitoring of Patient Waiting Time based on Open-Source Platform (오픈소스 플랫폼 기반의 실시간 환자 대기시간 모니터링 시스템 설계)

  • Ryu, Wooseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.575-580
    • /
    • 2018
  • This paper discusses system for real-time monitoring of patient waiting time in hospitals based on open-source platform. It is necessary to make use of open-source projects to develop a high-performance stream processing system, which analyzes and processes stream data in real time, with less cost. The Hadoop ecosystem is a well-known big data processing platform consisting of numerous open-source subprojects. This paper first defines several requirements for the monitoring system, and selects a few projects from the Hadoop ecosystem that are suited to meet the requirements. Then, the paper proposes system architecture and a detailed module design using Apache Spark, Apache Kafka, and so on. The proposed system can reduce development costs by using open-source projects and by acquiring data from legacy hospital information system. High-performance and fault-tolerance of the system can also be achieved through distributed processing.