• Title/Summary/Keyword: 하구언

Search Result 99, Processing Time 0.022 seconds

Seasonal and Year-to-year Variations of Water Quality in Mokpo Harbor Area by the Long-term Monitoring (목포항 주변 해역에서 장기 모니터링을 통한 수질의 계절 및 년간변동)

  • Park, Joong-Hyun;Park, Seong-Yoon;Lee, Yong-Hwa;Choi, Da-Mi;Lee, Sang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.97-102
    • /
    • 2005
  • Seasonal and year-to-year variations of water quality were observed at six stations in Mokpo Harbor area between 1997 and 2004. Water quality(salinity, pH, DIN and DIP) was variable between years. Salinity was significantly low in 1998, while nutrient concentrations were significantly higher in 1998 than other years. Water temperature, salinity, DO, COD and DIP concentrations exhibited clear seasonal variations, and these seasonal trends reflected seasonal changes in fresh water discharge from Youngsan river mouth. Water temperature, COD and DIP were significantly higher in August, while salinity and DO reached minimum values in August. In the station 1(Youngsan river mouth), waters with low salinity are subject to high nutrient inputs from Youngsan river, while in the station 6 (outside from Mokpo harbor) waters are primarily oceanic Relationship between water quality parameters indicates that salinity is the primary factor influencing the COD, DO, pH, Chlorophyll a and nutrient concentrations in Mokpo harbor area.

  • PDF

Study on Contration Distribution of HCB and DDTs in River Sediments of Korea (국내 주요 수계 표층 퇴적물 중 HCB와 DDTs의 농도분포 특성에 관한 연구)

  • Park, Jong-Eun;Lee, Sang-Chun;Hong, Jong-Ki;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.335-344
    • /
    • 2012
  • Hexachlorobenzene (HCB) and Dichloro-Diphenyl-Trichloroethane (DDT) were determined in surface sediments collected from main rivers of Korea. Concentration of HCB in sediments ranged from 0.41 to 3.82 (average 1.58) ng/g, 0.08 to 6.09 (average 0.90) ng/g, 0.02 to 0.97 (average 0.30) ng/g, 0.28 to 0.59 (average 0.42) ng/g and 0.23 to 0.48 (average 0.32) ng/g in Han river, Nakdong river, Geum river, Yeongsan and Seomjin river respectively. The DDTs concentration was ranged from 0.67 to 14.20 (average 4.76) ng/g, N.D. to 10.36 (average 1.81) ng/g, N.D. to 7.26 (average 1.87) ng/g, N.D. to 3.12 (average 1.08) ng/g and 0.02 to 2.04 (average 0.56) ng/g in Han river, Nakdong river, Geum river, Yeongsan and Seomjin river respectively. In comparison with the concentration of HCB and DDTs in other studies, the values in sediments of this study were lower than those of other countries. Comparison with that Sediment quality guideline (SQG) of National Oceanic and Atmospheric Administration (NOAA), the HCB levels of this study were very lower than Effect Range Low (ERL) value. In the case of DDTs, the concentrations of 46 points were higher than ERL (1.58 ng/g). It have not harmful effect on ecosystem of the sediment, however ongoing monitoring of sediments is deemed necessary.

A Study on the Seasonal Pre-reserved Planning of Water Resources in Korea (수자원의 계절별 적기확보방안에 관한 연구)

  • Heo, Jun-Haeng;Song, Jae-U;Lee, Gil-Chun
    • Water for future
    • /
    • v.16 no.2
    • /
    • pp.111-122
    • /
    • 1983
  • The water demand has been rapidly increased by the growth of population, industrialization, unbanization, water pollution and so on. This study carried out the seasonal pre-reserved planning for the five zones, comparing the water demand with the available water resources up to the goal year, 2001. The results of this study are as follows; 1) It is principle that the monthly water demand is supplied by the surface and ground water as the increasing tendency of it, and the deficit of water is supplemented by the water supplying capacity of dam. And water demand should be completely reserved before supplying the deficit of water. 2) The monthly and seasonal maximum deficit of water demand take place in June and summer. 3) The periods when the deficit of water demand exceeds the water supplying capacity of dam are 1984-1990, 1994-2001 in zone III. 4) To reserve the deficit of water demand in zone III, we would like to pre-construct Masan-Keumbo estuary barrage from 2001 to 1991 in Seomjin river basin, the deficit of water demand is supplied by the diversion of water from Yeongsan river basin with the developments of the ground water and small reservoirs until 1986.

  • PDF

The Early-Stage Changes of Water Qualities after the Saemangeum Sea-dike Construction (새만금 방조제 체절 이후 초기의 수질변화에 관한 연구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee;Kim, Hyun-Soo;Choi, Joeng-Hoon;Kim, Won-Jang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.199-213
    • /
    • 2008
  • Saemangeum salt-water Lake has been created by the completion of the sea-dike in April 2006. To monitor the water qualities of the lake during the sea-dike construction, salinity, SS, nutrients(DIN, DIP, DISi), and chlorophyll-$\alpha$ was analyzed for the surface water from 1999 to 2007. Due to the dike construction, weaker tidal current and lesser resuspension of bottom sediment resulted in the marked decrease of the concentrations of SS in the lake water. Consequently the clearer lake water has provided better condition for primary production with deeper penetration of sunlight into the water column and sufficient nutrient content in the water. Finally the chlorophyll-$\alpha$ content became approximately double in the concentration after the dike construction. Highly stimulated algal production with the marked decrease of the concentrations of SS was decreased the concentration of DIP in the surface water. On the other hand the concentration of DIN and DISi in surface water was increased after dike construction due to the expansion of the freshwater and the supply from bottom layer. As a result, the lake revealed an extremely high NIP ratio and a DIP-limited ecosystem. The lake has been transformed from a typical coastal ecosystem to a brackish one. Since the dike completion, the lake has shown a similar change pattern to the Geum River estuary. Due to the salt-wedge intrusion of seawater, it is highly probable to expect the formation of low-oxygen zone at the bottom layer near the river-mouth area of the lake during the summer. Therefore we need a continuous sentinel monitoring of bottom water qualities in the near future.

  • PDF

Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics (온실기체 (CH4, CO2, N2O)의 하구언갯벌 배출량과 배출특성연구)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.225-241
    • /
    • 2007
  • A closed flux chamber system was used for measuring major greenhouse gas (GHG) emission from tideland and/or wetland soils in estuarine area at Saemankum, Kunsan in southwestern Korea during from months of February to June 2006. Hourly averaged GHG soil emissions were measured two to three times a day during the ebb tide hours only. Site soils were analyzed for soil parameters (temperature, pH, total organic contents, N and C contents in soil) in the laboratory. Soil GHG fluxes were calculated based on the GHG concentration rate of change measured inside a closed chamber The analysis of GHG was conducted by using a Gas Chromatography (equipped with ECD/FID) at laboratory. Changes of daily, monthly GHGs' fluxes were examined. The relationships between the GHG emissions and soil chemical contents were also scrutinized with respect to gas production and consumption mechanism in the soil. Soil pH was pH $7.47{\pm}0.49$ in average over the experimental period. Organic matter contents in sample soil was $6.64{\pm}4.98\;g/kg$, and it shows relatively lower contents than those in agricultural soils in Kunsan area. Resulting from the soil chemistry data, soil nitrogen contents seem to affect GHG emission from the tidal land surface. The tidal soil was found to be either source or sink for the major GHG during the experimental periods. The annual average of $CH_{4}\;and\;CO_{2}$ fluxes were $0.13{\pm}0.86\;mg\;m^{-2}h^{-1}\;and\;5.83{\pm}138.73\;mg\;m^{-2}h^{-1}$, respectively, which will be as a source of these gases. However, $N_{2}O$ emission showed in negative flux, and the value was $-0.02{\pm}0.66\;mg\;m^{-2}h^{-1}$, and it implies tidal land surface act as a sink of $N_{2}O$. Over the experimental period, the absolute values of gas fluxes increased with soil temperature in general. Averages of the ambient gas concentration were $86.8{\pm}6.\;ppm$ in $CO_{2},\;1.63{\pm}0.34\;ppm\;in\;CH_{4},\;and\;0.59{\pm}0.15\;ppm\;in\;N_{2}O$, respectively. Generally, under the presence of gas emission from agricultural soils, decrease of gas emission will be observed as increase in ambient gas concentration. We, however, could not found significant correlation between the ambient concentrations and their emissions over the experimental period. There was no GHG compensation points existed in tide flat soil.

Long-term Variation and Flux of Organic Carbon in the Human-disturbed Yeongsan River, Korea (영산강의 유기물 플럭스와 장기변동에 대한 연구)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.187-198
    • /
    • 2017
  • Dissolved and particulate organic carbon concentrations and fluxes were measured and estimated for the Yeongsan River during 2006~2015. The dissolved organic carbon (DOC) concentrations ranged from 2.49 to $4.39mg{\cdot}C/L$ with a variance of 30.1% (${\sigma}_x/\bar{x}$), and showed a simple correlation to algal bloom and precipitation. The particulate organic carbon (POC) concentrations had gradually decreased from 6.68 to $0.19mg{\cdot}C/L$ for 10 years, and changed definitely with weir construction in 2011. Based on the relationships between POC and suspended particulate matters and between POC and chlorophyll-a, we found out that the distinct variation of the origin and composition of POC was caused by stagnation and screening effect of the dammed river. The total organic carbon (TOC) concentrations dropped to 52.3% (from 8.26 to $3.94mg{\cdot}C/L$) as the POC concentrations diminished to more than 94.8% after weir construction, in which the DOC forms up to 90.9%. The fluxes of TOC, based on the relationship between the annual TOC concentration and the discharge of Yeongsan dike sluice, were $2.56{\sim}19.41{\times}10^9g{\cdot}C/yr$, and showed a great deal of variability in 2011. Since then the TOC flux dropped to $5.40{\times}10^9$ (2011~2015) from $14.54{\times}10^9g{\cdot}C/yr$ (2006~2010). These results suggest that the weirs trapped annually $1.83{\times}10^9g{\cdot}C$ on a river bed, but released in great levels of dissolved organic form at their exits.

Development and Application of a Methodologyfor Climate Change Vulnerability Assessment-Sea Level Rise Impact ona Coastal City (기후변화 취약성 평가 방법론의 개발 및 적용 해수면 상승을 중심으로)

  • Yoo, Ga-Young;Park, Sung-Woo;Chung, Dong-Ki;Kang, Ho-Jeong;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.185-205
    • /
    • 2010
  • Climate change vulnerability assessment based on local conditions is a prerequisite for establishment of climate change adaptation policies. While some studies have developed a methodology for vulnerability assessment at the national level using statistical data, few attempts, whether domestic or overseas, have been made to develop methods for local vulnerability assessments that are easily applicable to a single city. Accordingly, the objective of this study was to develop a conceptual framework for climate change vulnerability, and then develop a general methodology for assessment at the regional level applied to a single coastal city, Mokpo, in Jeolla province, Korea. We followed the conceptual framework of climate change vulnerability proposed by the IPCC (1996) which consists of "climate exposure," "systemic sensitivity," and "systemic adaptive capacity." "Climate exposure" was designated as sea level rises of 1, 2, 3, 4, and 5 meter(s), allowing for a simple scenario for sea level rises. Should more complex forecasts of sea level rises be required later, the methodology developed herein can be easily scaled and transferred to other projects. Mokpo was chosen as a seaside city on the southwest coast of Korea, where all cities have experienced rising sea levels. Mokpo has experienced the largest sea level increases of all, and is a region where abnormal high tide events have become a significant threat; especially subsequent to the construction of an estuary dam and breakwaters. Sensitivity to sea level rises was measured by the percentage of flooded area for each administrative region within Mokpo evaluated via simulations using GIS techniques. Population density, particularly that of senior citizens, was also factored in. Adaptive capacity was considered from both the "hardware" and "software" aspects. "Hardware" adaptive capacity was incorporated by considering the presence (or lack thereof) of breakwaters and seawalls, as well as their height. "Software" adaptive capacity was measured using a survey method. The survey questionnaire included economic status, awareness of climate change impact and adaptation, governance, and policy, and was distributed to 75 governmental officials working for Mokpo. Vulnerability to sea level rises was assessed by subtracting adaptive capacity from the sensitivity index. Application of the methodology to Mokpo indicated vulnerability was high for seven out of 20 administrative districts. The results of our methodology provides significant policy implications for the development of climate change adaptation policy as follows: 1) regions with high priority for climate change adaptation measures can be selected through a correlation diagram between vulnerabilities and records of previous flood damage, and 2) after review of existing short, mid, and long-term plans or projects in high priority areas, appropriate adaptation measures can be taken as per this study. Future studies should focus on expanding analysis of climate change exposure from sea level rises to other adverse climate related events, including heat waves, torrential rain, and drought etc.

  • PDF

Eutrophication in the Downstream of Nakdong River (낙동강 하류역의 부영양화현상에 관한 연구)

  • CHOI Young-Chan;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 1986
  • A study on eutrophication in the downstream of the Nakdong River was conducted from October 1983 to September 1984. Nutrients concentration of the samples in this area was usually high and the nitrogen ratio to the phosphorus was as very high as $63.5{\sim}119.6$. The concentration of nutrients was in the range of $0.22{\sim}173{\mu}g-at/l$ for ammonia nitrogen, $26.7{\sim}187{\mu}g-at/l$ for nitrate nitrogen, $1.07{\sim}8.22{\mu}g-at/l$ for nitrite nitrogen, $58.7{\sim}231{\mu}g-at/l$ for total inorganic nitrogen and $0.44{\sim}4.43{\mu}g-at/l$ for phosphate phosphorus. The concentration of chlorophyll-a was in the range of $1.8{\sim}75.2\;mg/m^3$. Correlationship between concentration of nutrients and chlorophyll-a was not found. The concentrations of total suspended solid were in the range of $10.7{\sim}45.9\;ppm$, and $16.2{\sim}35.2\%$ of the total suspended solid was consisted of volatile suspended solid. According to the state of lacustrine nutrition, the state of the downstream of Nakdong River was equivalent to the eutrophication state in term of chlorophyll-a and inorganic nitrogen, and mid-nutritional state in term of phosphate.

  • PDF

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF