• 제목/요약/키워드: 필기체 인식

검색결과 196건 처리시간 0.031초

온라인 필기체 수식 인식에서 순차적인 구조 분석 (Sequential Structure Analysis in On-line Handwritten Formulas Recognition)

  • 이도화;정선화;김수형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.485-487
    • /
    • 1999
  • 본 논문에서는 온라인 필기체 수식 인식을 위한 순차적인 구조 분석 방법을 제안한다. 제안된 방법은 캐블릿상에서 필기된 수식에 대한 심볼 인식 결과와 각 심볼의 Bounding Box이 좌표를 입력받아서 필기 순서를 기반으로 순차적으로 수식의 구조를 해석한다. 그래프 내의 이웃하는 두 노드 사이의 관계를 결정하기 위해서 심볼의 사용에 관한 표기 정보와 6단계 관계 결정 규칙을 사용하여 노드들 사이에 생성될 수 있는 에지의 수를 최소화하고 BackTracking을 피했다. 제안 방법의 성능을 평가하기 위해 100개의 테스트 샘플에 대해 구조 분석 실험을 수행하였다.

  • PDF

한글 필기체 영상 데이터베이스 PE92의 소개 (An Overview of Hangul Handwritten Image Database PE92)

  • 김대환;방승양
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1992년도 제4회 한글 및 한국어정보처리 학술대회
    • /
    • pp.567-575
    • /
    • 1992
  • 한글 문자인식 시스템을 개발하기 앞서 생각해야 할 것이 인식실험에 사용될 문자 데이타를 수집하는 것이다. 이 논문에서는 연구 개발자들에게 문자인식 실험에 필요한 충분한 데이타를 제공하며 필기체 문자 데이타를 표준화하여 문자인식 시스템 상호간의 성능을 객관적으로 평가하기 위하여 한글 필기체 문자 데이터베이스 PE92를 개발하였다. 여기서는 PE92 데이타베이스의 소개로서 먼저 PE92를 수집하는데 있어 고려사항들, 즉 필기자, 수집문자의 수, 수집용지의 규격, 데이타베이스의 저장, 데이타의 압축에 대하여 알아본다. 다음 PE92 데이타베이스의 규격을 알아본다.

  • PDF

필기체 숫자와 비숫자의 인식을 위한 MLP 인식기의 구현 방법에 관한 연구 (A Study on the Implementation Methods of the MLP Recognizer for Handwritten Numerals and Non-Numerals)

  • 임길택
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.1119-1122
    • /
    • 2005
  • 본 논문은 MLP (multilayered perceptrons) 를 이용하여 필기체 숫자와 비숫자를 인식할 경우의 MLP 인식기의 구현 방법에 관한 것이다. MLP는 인식률 및 속도, 메모리 요구량 등에 있어서 필기체 숫자인식에 매우 효율적인 인식기로 알려져 있다. 그러나 기존 연구에서의 MLP는 숫자 입력에 대해서만 인식을 하고 있으며 비숫자 입력에 대해서는 인식률, 기각률 및 동작 특성에 대해서는 연구된 바가 거의 없다. 본 논문에서는 숫자와 비숫자가 혼재하는 경우의 MLP 인식기의 구현방법에 대해서 논한다. MLP 인식기는 세 가지 방법으로 구현되며, 세 가지의 오류 유형을 정의하여 각 인식 방법의 인식 특성을 분석하였다. 인식 실험은 약 63,000여자의 필기체 숫자와 비숫자를 이용하여 이루어지며, 세가지 오류 유형의 측면에서 숫자와 비숫자에 대한 가장 적절한 인식 방법이 논의된다.

  • PDF

순환신경망을 이용한 한글 필기체 인식 (Hangul Handwriting Recognition using Recurrent Neural Networks)

  • 김병희;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.316-321
    • /
    • 2017
  • 온라인 방식의 한글 필기체 인식 문제를 분석하고 순환신경망 기반의 해법을 모색한다. 한글 낱글자 인식 문제를 순서데이터 레이블링의 관점에서 서열 분류, 구간 분류, 시간별 분류의 세 단계로 구분하여 각각에 대한 해법을 살펴보며, 한글의 구성 원리를 고려한 해결 방안을 정리한다. 한글 2350글자에 대한 온라인 필기체 데이터에 GRU(gated recurrent unit)의 다층 구조를 가지는 서열 분류모델을 적용한 결과, 낱글자 인식 정확도는 86.2%, 초 중 종성 구성에 따른 6가지 유형 분류 정확도는 98.2%로 측정되었다. 유형 분류 모델로 획의 진행에 따른 유형 변화 역시 높은 정확도로 인식하는 결과를 통해, 순환신경망을 이용하여 순서 데이터에서 한글의 구조와 같은 고차원적 지식을 학습할 수 있음을 확인하였다.

중간점 알고리즘을 이용한 신경회로망 필기체 패턴인식 (Neural Network Handwriting Recognition Using Middle Point Algorithm)

  • 소아람;신병석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.394-397
    • /
    • 2007
  • 본 논문에서는 문자 인식의 특징 선별 방법으로 중간점 알고리즘을 이용하는 방법을 제안한다. 영상자료의 특징들로부터 중간점을 선별하고 심볼패턴을 이용하여 필기체 문자를 인식한다. 이 방법은 사전에 많은 심볼 패턴을 학습해야 하지만 한글과 영어의 높은 인식률을 보이고 있으며, 특히 복잡한 문자들의 경우 좋은 결과를 낸다. 여기서는 중간점 알고리즘으로 입력된 데이터를 심볼 패턴과 비교하고, 심볼 영역에 의해 최적 판별 기저를 탐색한 후, 그것을 특징으로 선택한다. 또한 사전 기능과 투명도 기능을 구현하여 필기체 인식을 이용한 여러 활용 방안을 제시한다.

  • PDF

우편번호 체계에서 사용중인 한글의 빈도수 조사 (A Frequency Measure of Hangul in Korean Zip Code)

  • 김민기;권영빈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.295-301
    • /
    • 1993
  • 제약이 없이 자유롭게 쓴 오프라인 필기체 한글을 인식하는 문제는 응용분야에 따른 도메인의 정보를 이용함으로써 보다 쉽게 접근할 수 있다. 본 연구는 오프라인 필기체 한글 인식을 위한 한 도메인으로 우편봉투를 대상으로 하였을 때, 우편번호가 할당된 지명과 건물명을 대상으로 글자의 종류와 빈도수를 통계 분석하였다. 분석 결과 가능한 한글 조합 11,172자중 403자만이 쓰이고 있음을 알았다. 이러한 정보는 자소 분할이 어려운 오프라인 필기체 한글 인식에 있어, 문자 단위 정합을 사용했을 때 인식속도 및 인식률 향상에 기여 할 것으로 생각된다.

  • PDF

Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식 (Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks)

  • 박준근;김상희;박원우
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.48-53
    • /
    • 2002
  • 본 논문에서는 무제약 필기체 숫자 인식에 있어서 향상된 RBF(Radial Basis Function) 신경망을 이용한 새로운 접근 방법을 제시하였다. RBF 신경망은 인식률과 인식 속도를 향상시키기 위해 기저 함수로서 Raised Cosine RBF를 사용하였다. Raised Cosine RBF 신경망 분류기의 성능 평가를 위하여 캐나다 몬트리올 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였고, 실험 결과 98.05%의 인식률을 보였다.

  • PDF

계층적 신경망을 이용한 자소인식에 기초한 Off-Line 필기체 한글인식 : 자소간 섭동체거를 위한 High-Level Constraint 회로의 설계

  • 장주석;김명원;임채덕;송윤선
    • 정보와 통신
    • /
    • 제9권11호
    • /
    • pp.34-36
    • /
    • 1992
  • 여러 개의 문자(혹은 여러 개의 자소로 구성된 한개의 문자)를 인식할때에는 문자(혹은 자소) 상호간에 영향을 미쳐서 오인식이 발생할 가능성이 높다. 개개의 숫자인식에 기초한 숫자열 인식이나, 개개의 자소인식을 바탕으로한 필기체 한글인식이 그 좋은 보기일 것이다. 예를 들어 단순한 한글 '그'를 Neocognitron으로 인식한다고 생각해 보자, 조합 가능한 글자를 모두 기억시키려면 방대한 규모의 회로가 필요하므로 현실적으로 불가능하다. 따라서 기본 자소(자음 14개, 모음 10개)를 인식하도록 학습시키고 이를 바탕으로 한글을 인식하는 것이 효율적이다. 이때, 회로의 각 세포가 보는 receptive field가 유한하여 '?'의 끝 세로부분 'I'가 '?'에 영향을 미쳐서 '?'로 인식된다 즉, 자소간의 섭동에 의해 '그'가 '고'로 인식되는 것이다. 이와같은 예는 '니'가 '넉'으로, '41'이 '4H'로 인식되는 등 매우 많지만 그 해결에 대한 연구는 거의 없다. 이 논문에서는 필기체 한글 자소를 인식하는 Necognitron외에 자소간의 섭동현상을 제거하기 위한 high-level constraint 회로를 Lotka-Volterra동역학에 기초하여 설계하였다. 이로써 off-line필기체 한글인식을 보다 효과적으로 할 수 있음을 컴퓨터 시뮬레이션으로 보인다.

  • PDF

필기체 숫자의 인식과 비숫자의 기각을 위한 MLP 신경망의 구현 방법에 관한 연구 (A Study on the Implementation Methods of MLP Neural Networks for the Recognition of Handwritten Numerals and the Rejection of Non-Numerals)

  • 임길택
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1607-1615
    • /
    • 2005
  • 본 논문은 MLP (multilayer perceptrons) 신경망을 이용하여 필기체 妾자와 비숫자를 인식하거나 기각할 경우의 MLP 구현 방법에 관한 것이다. MLP는 인식률 및 속도, 메모리 요구량 등에 있어서 필기체 숫자인식에 매우 효율적인 인식기로 알려져 있다. 그러나 기존 연구에서의 MLP는 숫자 입력에 대해서의 인식에만 초점이 맞춰져 있으며 비숫자 입력 경우의 인식률, 기각률 및 동작 특성에 대해서는 연구된 바가 거의 없다. 본 논문에서는 숫자와 비숫자가 혼재하는 경우의 MLP 인식기의 구현방법에 대해서 논한다. MLP 인식기는 세 가지 방법으로 구현되며, 세 가지의 오류유형을 정의하여 각 인식 방법의 인식 특성을 분석하였다. 인식 실험은 66,705자의 필기체 숫자와 비숫자를 이용하여 이루어지며, 세가지 오류유형의 측면에서 숫자와 비숫자에 대한 가장 적절한 인식 방법이 논의된다.

OCR과 패턴분석 알고리즘을 활용한 인공지능 기반 기록 자동화 서비스 제안 (Proposal Record Automation Service Based on AI by Using OCR and Pattern Analysis Algorithm)

  • 황윤영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.530-532
    • /
    • 2019
  • 제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.