• 제목/요약/키워드: 핀틀형 인젝터

검색결과 4건 처리시간 0.016초

측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교 (Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods)

  • 김재호;임정현;노수영;문병수;김주영;강경균
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교 (Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector)

  • 배규한;임주완;이재현;문석수
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.

글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구 (A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug)

  • 문영호;오영택
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF

PDPA에 의한 Pintle형 노즐의 미립화 특성실험 -식물유를 중심으로- (Atomization Characteristics Experiment of Pintle Type Nozzle by the PDPA)

  • 나우정;유병구;정진도
    • 에너지공학
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 1998
  • 본 실험은 고점성 미강유의 액체 미립화를 향상시키기 위해 초음파 에너지를 적용하여 미립화 특성을 규명하고자 수행하였다. 식물유의 미립화 실험장치는 유사하게 1마력의 구동모터와 노즐을 장착할 수 있는 인젝터 및 소형분사 펌프 등으로 구성되어 있는 분사장치, 액적의 분산을 막기 위한 포집장치, 공급되는 연료에 초음파 진동을 가해주는 초음파 장치, 그리고 미립화 정도를 측정하기 위한 PDPA 시스템으로 구성되어 있다. 핀틀형 노즐에서 된끝각을 5$^{\circ}$ $10^{\circ}$ 15$^{\circ}$이며, 분사압력은 10, 13, 16 Mpa의 조건으로 실험하였다. 이 때 포집거리 300mm로 하였다. 노즐 분사 압력에 따른 분무 평균입경을 측정하기 위하여 노즐테스터를 대기압 상태에서 핀틀링 노즐의 스프링 크기를 조절하여 분무 평균입경(SMD)은 상용연료 공급장치 보다 초음파 연료공급 장치의 경우 Pintle형 노즐에서는 SMD를 기준으로 하여 10% 미립화 상승효율을 얻을 수 있었다. 따라서 본 실험에서는 초음파 진동에너지를 연료에 공급함으로써 고점성연료의 미립화 개선이 이루어지고 있음을 확인할 수 있었다.

  • PDF