• 제목/요약/키워드: 픽셀 질감분석 파라미터

검색결과 7건 처리시간 0.023초

간 초음파영상에서 컴퓨터보조진단을 이용한 미만성 간질환의 영상분석 (Image Analysis of Diffuse Liver Disease using Computer-Adided Diagnosis in the Liver US Image)

  • 이진수;김창수
    • 한국방사선학회논문지
    • /
    • 제9권4호
    • /
    • pp.227-234
    • /
    • 2015
  • 본 연구는 간 초음파영상에서 통계적 속성 기반의 밝기 히스토그램에 기초한 픽셀 질감분석 파라미터(평균밝기, 왜곡도, 균일도, 엔트로피)와 간과 콩팥실질의 밝기 차를 이용한 영상분석을 통해 미만성 간질환의 컴퓨터보조진단 적용 가능성을 알아보고자 하였다. 실험은 간 초음파영상(정상, 지방간, 간경화)에서 관심영역($50{\times}50$픽셀)을 설정하고 4가지의 픽셀 질감분석 파라미터와 간과 콩팥의 실질 밝기의 차를 이용하여 질환인식률을 평가하였다. 그 결과 평균밝기, 균일도, 엔트로피의 질환인식률은 100%, 왜곡도 96%로 높게 나타났으며, 간과 콩팥의 실질 밝기 차는 정상 $-1.129{\pm}12.410$, 지방간 $33.182{\pm}11.826$으로 뚜렷한 차이를 나타내었으나, 간경화의 경우 $-1.668{\pm}10.081$로 정상과는 다소 작은 차이를 나타내었다. 이러한 결과를 바탕으로 높은 질환인식률을 보인 픽셀 질감분석 파라미터와 실질 밝기 차를 이용한 컴퓨터보조진단은 미만성 간질환의 감별에 유용한 도구로써 임상적인 활용 가능성이 있으며, 판독 오류를 최소화하고 정확한 진단과 치료방향 제시에 도움이 될 것으로 기대된다.

비균일 양자화 기법에 기반을 둔 GLCM의 성능개선 (A Performance Improvement of GLCM Based on Nonuniform Quantization Method)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.133-138
    • /
    • 2015
  • 본 논문에서는 비균일 양자화에 기반을 둔 영상의 질감분석에 널리 이용되고 있는 gray level co-occurrence matrix(GLCM)의 성능개선을 제안하였다. 여기서 비균일 양자화는 평균자승오차의 최소화를 위한 반복계산 기법인 Lloyd 알고리즘을 이용하였다. 이는 영상에서의 비균일 양자화 과정으로 얻어지는 비선형의 명암레벨을 GLCM의 생성에 이용함으로써 행렬의 차원을 감소시켜, GLCM의 생성과 질감특성 파라미터들의 계산에 따른 부하를 줄이기 위함이다. 제안된 기법을 30개의 $120{\times}120$ 픽셀의 256 그레이 레벨을 가진 영상들을 대상으로 적용하여 angular second moment, contrast, variance, entropy, correlation, inverse difference moment 6개의 질감특성 파라미터들을 각각 계산한 실험결과, 양자화를 수행하지 않은 256 레벨 GLCM에 비해 계산시간과 저장 공간에서 개선된 성능이 있음을 확인하였다. 특히 48, 32, 16, 12, 8의 비균일 양자화 레벨 중에서 16일 때 가장 우수한 질감특성분석 성능이 있음을 알 수 있었다.

GLCM 특징정보 기반의 자동차 종류별 분류 방안 (Gray-Level Co-Occurrence Matrix(GLCM) based vehicle type classification method)

  • 윤종일;김종배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.410-413
    • /
    • 2011
  • 본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.

유방 초음파영상에서 질감특성분석 알고리즘을 이용한 컴퓨터보조진단의 적용 (Application of Computer-Aided Diagnosis a using Texture Feature Analysis Algorithm in Breast US images)

  • 이진수;김창수
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.507-515
    • /
    • 2015
  • 본 연구는 초음파영상에서 컴퓨터보조진단으로 유방질환의 병변인식률을 알아보고자 6가지 질감특성분석 파라미터(평균밝기, 대조도, 평탄도, 왜곡도, 균일도, 엔트로피) 알고리즘을 제안하였다. 2013년 8월에서 2014년 1월까지 부산소재 대학병원을 내원한 환자 중 영상의학과 전문의의 판독과 세포병리학 진단 결과를 토대로 한 90증례의 유방 초음파영상을 대상으로 하였다. 연구방법은 유방 초음파영상에서 관심영역을 $50{\times}50$ 픽셀 크기로 설정하였으며, 획득된 실험영상(정상, 양성, 악성)에 히스토그램 평활화의 전처리 과정 후 MATLAB을 이용한 질감특성분석 알고리즘의 결과값을 산출하였다. 그 결과 제안된 질감특성분석 파라미터 중 평균밝기, 왜곡도, 균일도, 엔트로피의 정상과 악성의 병변인식률은 100%로 높게 나타났으며. 정상과 양성의 병변인식률은 약 83~96%를 나타내었다. 이러한 결과는 유방질환에서 감별진단의 전처리 단계로 자동진단의 가능성을 나타내며, 향후 제안된 알고리즘의 추가적인 연구와 다양한 임상증례에 대한 신뢰성과 재현성이 제공된다면 컴퓨터보조진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파 영상에 대한 적용이 가능할 것으로 사료된다.

GLCM알고리즘을 이용한 경직장 초음파 영상의 정량적 평가 (Quantitative assessment of Endorectal Ultrasonography by using GLCM Algorithm)

  • 노다정;강민지;김유경;서아름;이인호;정희성;조진영;고성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.383-387
    • /
    • 2015
  • 현대인들의 불규칙한 생활과 서구화된 식습관에 의해 대장 및 직장 질환이 증가하고 있는 추세로, 특히 직장암은 전체 대장암의 50%를 차지하고 있다. 초기 직장암의 경우 표면으로 돌출되는 부분이 없으므로 초음파로 조직 내부를 보지 않으면 직장 농양으로 오진하는 오류를 범하기도 한다. 그러나 초음파 진단을 하더라도 직장암의 병기에 따라 농양과 육안으로 구별이 어려운 경우가 있기 때문에 보다 정확한 진단이 필요하다. 그러므로 본 연구에서는 직장암과 농양 영상에 대한 컴퓨터 알고리즘을 이용하여 정량적인 분석을 하였다. GLCM을 적용하여 정상 20증례와 농양, 직장암 각 20증례를 분석영역($50{\times}50$ 픽셀)으로 설정하고, 각 영상에서 Autocorrelation, Max probability, Sum average, Sum variance 4가지 파라미터를 비교하여 분석하였다. 결과적으로 Autocorrelation, Max probability, Sum variance 3개의 파라미터에서는 100%, Sum average 파라미터에서는 암 95%, 농양에서 90% 이상의 높은 병변 질감 검출 효율이 나타났다. 이러한 파라미터들이 직장에서의 정상조직, 농양조직, 암조직 간의 판별의 기준으로 가치가 있다고 사료된다. 임상에서의 활용정도에 따라 컴퓨터 보조진단으로서의 충분한 유용성을 볼 수 있을 것이다.

  • PDF

전립선비대증 초음파 영상에서 GLCM을 이용한 컴퓨터보조진단의 영상분석 (Image Analysis of Computer Aided Diagnosis using Gray Level Co-occurrence Matrix in the Ultrasonography for Benign Prostate Hyperplasia)

  • 조진영;김창수;강세식;고성진;예수영
    • 한국콘텐츠학회논문지
    • /
    • 제15권3호
    • /
    • pp.184-191
    • /
    • 2015
  • 전립선 초음파영상은 전립선암, 전립선비대증, 전립선염을 진단하고 전립선암의 생검과 전립선비대에서 전립선 크기 확인 등을 위해서 사용된다. 전립선비대증은 노인 남성의 가장 흔한 질병 중의 하나이다. 전립선은 주변구역, 중심구역, 이행구역과 전방 섬유근 간질부분 4개 구획으로 나누어진다. 전립선비대증은 조직학적으로 전립선 이행구역에서 결절성 증식을 동반한 요도주위의 진행성 과증식이 특징으로 이 결절로 인한 요도 폐쇄를 야기함에 따라 하부요로 증상을 유발한다. 그러므로 본 연구에서는 정상 전립선 이행구역 영상과 전립선비대 이행구역 영상에 대한 컴퓨터 알고리즘을 이용하여 정량적인 분석을 하였다. GLCM을 적용하여 정상영상 60증례와 전립선비대증영상 60증례을 분석영역($50{\times}50$ 픽셀)으로 설정하고, 각 영상에서 Autocorrelation, Contrast, Cluster Prominence, Entropy, Max Probability, Sum average 6가지 파라미터를 비교하여 분석하였다. 결과적으로 Autocorrelation, Cluster Prominence, Entropy, Sum Average 4개의 파라미터에서는 병변의 질감 검출 효율이 92-98%로 높게 나왔다. 이에 전립선 이행구역의 결절성 증식 변화를 정량적인 영상분석으로 확인 할 수 있었다. 향후 전립선비대증 진단에 있어 2차적인 수단으로 가능할 것으로 기대되며, 다양한 전립선 초음파 영상에 있어 기초 자료가 될 것으로 사료된다.

초음파영상에서 갑상선 결절의 컴퓨터자동진단을 위한 Texture Features 알고리즘 응용 (Application of Texture Features algorithm using Computer Aided Diagnosis of Papillary Thyroid Cancer in the Ultrasonography)

  • 고성진;이진수;예수영;김창수
    • 한국콘텐츠학회논문지
    • /
    • 제13권5호
    • /
    • pp.303-310
    • /
    • 2013
  • 초음파영상은 갑상선 질병에서 결절성 갑상선 질병을 진단하는 검사로서 결절의 위치, 크기, 개수, 내부 에코 특성에 대한 정보를 제공하여 암의 가능성이 높은 고위험 결절을 선별하며, 세침흡인 검사 시 정확한 유도를 가능하게 한다. 갑상선 결절 중 악성으로 진단되는 경우는 5% 미만이지만 초음파에서 감별진단이 중요하다. 그러므로 본 연구에서는 병리학적으로 갑상선 유두암으로 진단된 증례를 실험 대상으로 하며, 영역을 묘사하는 알고리즘으로 그 질감을 정량화하는 방법으로 질감특징 분석(TFA)를 적용하여 컴퓨터자동진단의 검출 효율을 실험하였다. 초음파영상에서 관심영역을 설정하여 $50{\times}50$ 픽셀 크기, 히스토그램 평활화로 전처리하여 실험영상을 획득하였다. 전체영상 70증례에서 갑상선 유두암의 영상 35증례를 테스트 영상으로 하고, 고유영상 생성의 정상영상 35증례를 학습영상으로 실험하였다. 질감특징 분석 알고리즘을 적용한 실험결과 GLavg, SKEW, UN, ENT 4개 파라미터의 질병 검출 효율이 91~100%로 높게 나타났다. 이는 갑상선 결절 질병을 감별하는 컴퓨터자동진단의 응용을 나타내며, 갑상선 질병의 감별진단에 전처리 자동진단 가능성을 나타낸다. 향후 추가적인 관련 알고리즘의 연구가 계속 진행된다면 갑상선 질병의 컴퓨터자동진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파영상의 질병에 대한 적용이 가능할 것으로 사료된다.