• Title/Summary/Keyword: 픽셀 밝기분포

Search Result 18, Processing Time 0.026 seconds

An Efficient Contact Angle Computation using MADD Edge Detection (적응성 방향 미분의 에지 검출에 의한 효율적인 접촉각 연산)

  • Yang, Myung-Sup;Lee, Jong-Gu;Kim, Eun-Mi;Pahk, Cherl-Soo
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we try to improve the accuracy of automatic measurement for analysis equipment by detecting efficiently the edge of a waterdrop with transparency. In order to detect the edge of a waterdrop with transparency, we use an edge detecting technique, MADD (Modified Adaptive Directional Derivative), which can identify the ramp edges with various widths as the perfectly sharp edges and respond effectively regardless of enlarging or reducing the image. The proposed edge detecting technique by means of perfect sharpening of ramp edges employs the modified adaptive directional derivatives instead of the usual local differential operators in order to detect the edges of image. The modified adaptive directional derivatives are defined by introducing the perfect sharpening map into the adaptive directional derivatives. Finally we apply the proposed method to contact angle arithmetic and show the effiency and validity of the proposed method.

  • PDF

Image Segmentation Using Level Set Method with New Speed Function (새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.335-345
    • /
    • 2011
  • In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.

The Lines Extraction and Analysis of The Palm using Morphological Information of The Hand and Contour Tracking Method (손의 형태학적 정보와 윤곽선 추적 기법을 이용한 손금 추출 및 분석)

  • Kim, Kwang-Baek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.243-248
    • /
    • 2011
  • In this paper, we propose a new method to extract palm lines and read it with simple techniques from one photo. We use morphological information and 8-directional contour tracking algorithm. From the digitalized image, we transform original RGB information to YCbCr color model which is less sensitive to the brightness information. The palm region is extracted by simple threshold as Y:65~255, Cb:25~255, Cr:130~255 of skin color. Noise removal process is then followed with morphological information of the palm such that the palm area has more than quarter of the pixels and the rate of width vs height is more than 2:1 and 8-directional contour tracking algorithm. Then, the stretching algorithm and Sobel mask are applied to extract edges. Another morphological information that the meaningful edges(palm lines) have between 10 and 20 pixels is used to exclude noise edges and boundary lines of the hand from block binarized image. Main palm lines are extracted then by labeling method. This algorithm is quite effective even reading the palm from a photographed by a mobile phone, which suggests that this method could be used in various applications.

Shot Motion Classification Using Partial Decoding of INTRA Picture in Compressed Video (압축비디오에서 인트라픽쳐 부분 복호화를 이용한 샷 움직임 분류)

  • Kim, Kang-Wook;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.858-865
    • /
    • 2011
  • In order to allow the user to efficiently browse, select, and retrieve a desired video part without having to deal directly with GBytes of compressed data, classification of shot motion characteristic has to be carried out as a preparation for such user interaction. The organization of video information for video database requires segmentation of a video into its constituent shots and their subsequent characterization in terms of content and camera movement in shot. In order to classify shot motion, it is a conventional way to use element of motion vector. However, there is a limit to estimate global camera motion because the way that uses motion vectors only represents local movement. For shot classification in terms of motion information, we propose a new scheme consisting of partial decoding of INTRA pictures and comparing the x, y displacement vector curve between the decoded I-frame and next P-frame in compressed video data.

Image Quality Enhancement by Using Logistic Equalization Function (로지스틱 평활화 함수에 의한 영상의 화질개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • This paper presents a quality enhancement of images by using a histogram equalization based on the symmetric logistic function. The histogram equalization is a simple and effective spatial processing method that it enhances the quality by adjusting the brightness of image. The logistic function that is a sigmoidal nonlinear transformation function, is applied to non-linearly enhance the brightness of the image according to its intensity level frequency. We propose a flexible and symmetrical logistic function by only using the intensity with maximum frequency in an histogram and the total number of pixels. The proposed function decreases the computation load of an exponential function in the traditional logistic function. The proposed method has been applied for equalizing 5 images with a different resolution and histogram distribution. The experimental results show that the proposed method has the superior enhancement performances compared with the source images and the traditional global histogram equalization, respectively.

Hue Shift Model and Hue Correction in High Luminance Display (고휘도 디스플레이의 색상이동모델과 색 보정)

  • Lee, Tae-Hyoung;Kwon, Oh-Seol;Park, Tae-Yong;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.60-69
    • /
    • 2007
  • The human eye usually experiences a loss of color sensitivity when it is subjected to high levels of luminance, and perceives a discrepancy in color between high and normal-luminance displays, generally known as a hue shift. Accordingly, this paper models the hue-shift phenomenon and proposes a hue-correction method to provide perceptual matching between high and normal-luminance displays. The value of hue-shift is determined by perceived hue matching experiments. At first the phenomenon is observed at three lightness levels, that is, the ratio of luminance is the same between high and normal-luminance display when the perceived hue matching experiments we performed. To quantify the hue-shift phenomenon for the whole hue angle, color patches with the same lightness are first created and equally spaced inside the hue angle. These patches are then displayed one-by-one on both displays with the ratio of luminance between two displays. Next, the hue value for each patch appearing on the high-luminance display is adjusted by observers until the perceived hue for the patches on both displays appears the same visually. After obtaining the hue-shift values, these values are fit piecewise to allow shifted-hue amounts to be approximately determined for arbitrary hue values of pixels in a high-luminance display and then used for correction. Essentially, input RGB values of an image is converted to CIELAB values, and then, LCh (lightness, chroma, and hue) values are calculated to obtain the hue values for all the pixels. These hue values are shifted according to the amount calculated by the functions of the hue-shift model. Finally, the corrected CIELAB values are calculated from corrected hue values, after that, output RGB values for all pixels are estimated. For evaluation, an observer's preference test was performed with hue-shift results and Almost observers conclude that the images from hue-shift model were visually matched with images on normal luminance display.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.