• Title/Summary/Keyword: 픽셀기반

Search Result 680, Processing Time 0.026 seconds

Home Network Observation System Using Activate Pattern Analysis of User and Multimedia Streaming (사용자의 행동 패턴 분석과 멀티미디어 스트리밍 기술을 이용한 홈 네트워크 감시 시스템)

  • Oh Dong-Yeol;Oh Hae-Seok;Sung Kyung-Sang
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1258-1268
    • /
    • 2005
  • While the concept of Home Network is laying by and its interests are increasing by means of digitalizing of the information communication infrastructure, many efforts are in progress toward convenient lives. Moreover, as information household appliances which have a junction of connecting to the network are appearing over the past a few years, the demands against intellectual Home Services are increasing. In this paper, by being based upon Multimedia which is an essential factor for developing of various application services on ubiquitous computing environments, we suggest a simplified application model that could apply the information to the automated processing system after studying user's behavior patterns using authentication and access control for identity certification of users. In addition, we compared captured video images in the fixed range by pixel unit through some time and checked disorder of them. And that made safe of user certification as adopting self-developed certification method which was used 'Hash' algorism through salt function of 12 byte. In order to show the usefulness of this proposed model, we did some testing by emulator for control of information after construction for Intellectual Multimedia Server, which ubiquitous network is available on as a scheme so as to check out developed applications. According to experimental results, it is very reasonable to believe that we could extend various multimedia applications in our daily lives.

  • PDF

A Real-time Single-Pass Visibility Culling Method Based on a 3D Graphics Accelerator Architecture (실시간 단일 패스 가시성 선별 기법 기반의 3차원 그래픽스 가속기 구조)

  • Choo, Catherine;Choi, Moon-Hee;Kim, Shin-Dug
    • The KIPS Transactions:PartA
    • /
    • v.15A no.1
    • /
    • pp.1-8
    • /
    • 2008
  • An occlusion culling method, one of visibility culling methods, excludes invisible objects or triangles which are covered by other objects. As it reduces computation quantity, occlusion culling is an effective method to handle complex scenes in real-time. But an existing common occlusion culling method, such as hardware occlusion query method, sends objects' data twice to GPU and this causes processing overheads once for occlusion culling test and the other is for rendering. And another existing hardware occlusion culling method, VCBP, can test objects' visibility quickly, but it neither test bounding volume nor return test result to application stage. In this paper, we propose a single pass occlusion culling method which uses temporal and spatial coherency, with effective occlusion culling hardware architecture. In our approach, the hardware performs occlusion culling test rapidly with cache on the rasterization stage where triangles are transformed into fragments. At the same time, hardware sends each primitive's visibility information to application stage. As a result, the application stage reduces data transmission quantity by excluding covered objects using the visibility information on previous frame and hierarchical spatial tree. Our proposed method improved maximum 44%, minimum 14% compared with S&W method based on hardware occlusion query. And the performance is increased 25% and 17% respectively, compared to maximum and minimum performance of CHC method which is based on occlusion culling method.

A Encryption Technique of JPEG2000 Image Using 3-Dimensional Chaotic Cat Map (3차원 카오스 캣맵을 이용한 JPEG2000 영상의 암호화 기술)

  • Choi, Hyun-Jun;Kim, Soo-Min;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.173-180
    • /
    • 2005
  • In this paper, we proposed the image hiding method which decreases calculation amount by encrypt partial data using discrete wavelet transform(DWT) and linear scale quantization which were adopted as the main technique for frequency transform in JPEG2000 standard. Also we used the chaotic system and cat map which has smaller calculation amount than other encryption algorithms and then dramatically decreased calculation amount. This method operates encryption process between quantization and entropy coding for preserving compression ratio of images and uses the subband selection method. Also, suggested encryption method to JPEG2000 progressive transmission. The experiments have been performed with the Proposed methods implemented in software for about 500 images. Consequently, we are sure that the proposed is efficient image encryption methods to acquire the high encryption effect with small amount of encryption. It has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas.

Gaussian Noise Reduction Algorithm using Self-similarity (자기 유사성을 이용한 가우시안 노이즈 제거 알고리즘)

  • Jeon, Yougn-Eun;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Most of natural images have a special property, what is called self-similarity, which is the basis of fractal image coding. Even though an image has local stationarity in several homogeneous regions, it is generally non-stationarysignal, especially in edge region. This is the main reason that poor results are induced in linear techniques. In order to overcome the difficulty we propose a non-linear technique using self-similarity in the image. In our work, an image is classified into stationary and non-stationary region with respect to sample variance. In case of stationary region, do-noising is performed as simply averaging of its neighborhoods. However, if the region is non-stationary region, stationalization is conducted as make a set of center pixels by similarity matching with respect to bMSE(block Mean Square Error). And then do-nosing is performed by Gaussian weighted averaging of center pixels of similar blocks, because the set of center pixels of similar blocks can be regarded as nearly stationary. The true image value is estimated by weighted average of the elements of the set. The experimental results show that our method has better performance and smaller variance than other methods as estimator.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image (드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정)

  • Jin, Yu-Jin;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.90-100
    • /
    • 2017
  • The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

Fault Detection and Reuse of Self-Adaptive Module (자가 적응 모듈의 오류 탐지와 재사용)

  • Lee, Joon-Hoon;Lee, Hee-Won;Park, Jeong-Min;Jung, Jin-Su;Lee, Eun-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.247-252
    • /
    • 2007
  • 오늘날 컴퓨팅 환경은 점차 복잡해지고 있으며, 복잡한 환경을 관리하는 이 점차 중요해 지고 있다. 이러한 관리를 위해 어플리케이션의 내부 구조를 드러내지 않은 상태에서 환경에 적응하는 자가치유에 관한 연구가 중요한 이슈가 되고 있다. 우리의 이전 연구에서는 자가 적응 모듈의 성능 향상을 위해 스위치를 사용하여 컴포넌트의 동작 유무를 결정하였다. 그러나 바이러스와 같은 외부 상황에 의해 자가 적응 모듈이 정상적으로 동작하지 않을 수 있으며 다수의 파일을 전송할 때 스위치가 꺼진 컴포넌트들은 메모리와 같은 리소스를 낭비한다. 본 연구에서는 이전 연구인 성능 개선 자가 적응 모듈에서 발생할 수 있는 문제점을 해결하기 위한 방법을 제안한다. 1) 컴포넌트의 동작 여부를 결정하는 스위치를 확인하여 비정상 상태인 컴포넌트를 찾아 치유를 하고, 2) 현재 단계에서 사용하지 않는 컴포넌트를 다른 작업에서 재사용한다. 이러한 제안 방법론을 통해 파일 전송이 않은 상황에서도 전체 컴포넌트의 수를 줄일 수 있으며 자가 적응 제어 모듈을 안정적으로 작동할 수 있도록 한다. 본 논문에서는 명가를 위하여 비디오 회의 시스템 내의 파일 전송 모듈에 제안 방법론을 적용하여 이전 연구의 모듈과 제안 방법론을 적용한 모듈이 미리 정한 상황들에서 정상적으로 적응할 수 있는지를 비교한다. 또한 파일 전송이 많은 상황에서 제안 방법론을 적용하였을 때 이전 연구 방법론과의 컴포넌트 수를 비교한다. 이를 통해 이전 연구의 자가 적응 모듈의 비정상 상태를 찾아낼 수 있었고, 둘 이상의 파일 전송이 이루어 질 때 컴포넌트의 재사용을 통해 리소스의 사용을 줄일 수 있었다.위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.능적으로 우수한 기호성, 즉석에서 먹을 수 있는 간편성, 장기저장에 의한 식품 산패, 오염 및 변패 미생물의 생육 등이 발생하지 않는 우수한 생선가공, 저장방법, 저가 생선류의 부가가치 상승 등 여러 유익한 결과를 얻을 수 있는 효과적인 가공방법을 증명하였다.의 평균섭취량에도 미치지 못하는 매우 저조한 영양상태를 보여 경제력, 육체적 활동 및 건강상태 등이 매우 열악한 이들 집단에 대한 질 좋은 영양서비스의 제공이 국가적 차원에서 시급히 재고되어야 할 것이다. 연구대상자 특히 배달급식 대상자의 경우 모집의 어려움으로 인해 적은 수의 연구대상자의 결과를 보고한 것은 본 연구의 제한점이라 할 수 있다 따라서 본 연구결과를 바탕으로 좀 더 많은 대상자를 대상으로 한 조사 연구가 계속 이루어져 가정배달급식 프로그램의 개선을 위한 유용한 자료로 축적되어야 할 것이다.상범주로 회복함을 알수 있었고 실험결과 항암제 투여후 3 일째 피판 형성한 군에서 피판치유가 늦어진 것으로 관찰되어 인체에서 항암 투여후 수술시기는 인체면역계가 회복하는 시기를 3주이상 경과후 적어도 4주째 수술시기를 정하는 것이 유리하리라 생각되

  • PDF

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.