Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.589-591
/
2011
채색화 기법은 일부 픽셀의 색상 정보를 이용하여 흑백의 이미지에 색상 정보를 추가하는 기법이다. 이러한 채색화 기법을 기반으로한 색상 이미지 압축기법들이 연구되고 있다. 색상 평면에서 대표적인 픽셀들을 소스 픽셀로 자동적으로 선택하고, 이 소스 픽셀들의 위치와 색상 정보만을 디코더에 압축하여 전송한다. 본 논문에서는 밝기 변화량을 이용하여 소스 픽셀의 위치를 결정함으로써, 디코더에서도 동일한 작업으로 소스 픽셀의 위치를 결정할 수 있다. 따라서 소스 픽셀에 대한 위치정보를 전송하기 위한 비트량을 줄임으로써 압축 효율을 높였다. 제안알고리듬은 디코더에서 색상정보의 복원에 이용하는 채색화 기법의 특성에 맞추어서 밝기가 평평하고 넓은 영역에서 먼저 소스픽셀을 선택하여, 이웃의 비슷한 밝기를 가지는 픽셀에 대한 색상 정보를 효율적으로 압축한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.137-138
/
2018
이미지의 픽셀 기반 처리는 한 픽셀의 값을 변환하고 다른 픽셀의 값에 관계없이 현재 픽셀의 값에 따라 변환하는 프로세스를 의미한다. 픽셀 기반 처리는 이미지 변환, 이미지 향상 및 이미지 합성과 같은 많은 분야에서 가장 기본적인 작업이다. 본 논문에서는 히스토그램 연산과 같은 영상의 전처리 과정이 경계 검출 결과에 미치는 상호 연관성에 대해 알아보고 픽셀 기반의 처리를 이용하여 효과적으로 영상의 윤곽을 찾는 방법을 제안한다.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2007.04a
/
pp.215-218
/
2007
이 논문은 고해상도 Quickbird 영상을 이용하여 세부레벨계획을 위한 토지피복분류를 수행하였으며 고해상도 영상을 이용한 토지피복분류를 위하여 객체기반분류와 ISODATA 기법을 적용하였다. 객체기반분류는 eCognition 소프트웨어를 사용하였으며 ISODATA 기법의 토지피복분류 결과와 비교분석을 수행하였다. 연구 대상지역은 인도의 Sukkalampatti이라 하는 작은 유역을 대상으로 연구를 진행하였다. 고해상도 영상의 사용으로 토지피복분류에 있어서 공간 해상도에 따른 토지피복의 세부레벨분류 정확도를 향상 시킬 수 있는 이점을 확인 할 수 있으며 또한, 객체기반분류와 ISODATA 기법의 분류 결과는 eCognition을 사용한 객체기반 토지피복분류결과가 ISODATA의 픽셀기반의 분류방법보다 높은 정확도를 보였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.359-360
/
2021
The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.7
/
pp.149-156
/
2013
This paper presents a hardware edge detector of image signal at pixel level of CMOS image sensor (CIS). The circuit detects edges of an image based on a bump circuit combining with the pixels. The APS converts light into electrical signals and the bump circuit compares the brightness between the target pixel and its neighbor pixels. Each column on CIS 64 by 64 pixels array shares a comparator. The comparator decides a peak level of the target pixel comparing with a reference voltage. The proposed edge detector is implemented using 0.18um CMOS technology. The circuit shows higher fill factor 34% and power dissipation by 0.9uW per pixel at 1.8V supply.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.161-163
/
2022
본 논문에서는 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 효율적인 결합을 통해 기존의 패치매치 기반의 방법들이 낮은 깊이값 추정 정확도를 보인 영역들인 텍스처가 부족한 영역과 기존의 분할 기반 방법들이 깊이값 추정에 한계를 보인 세밀한 영역에서의 깊이값 추정 정확도를 동시에 높이고 고품질의 조밀 깊이지도를 얻는 것을 목표로 한다. 이를 위해 제안한 방법에서는 신뢰지도를 바탕으로 패치매치 기법의 조밀 깊이지도, 조밀 노말지도와 분할 기법의 조밀 깊이지도, 조밀 노말지도의 초기 결합 깊이지도 및 초기 결합 노말지도를 생성한다. 이후 각 픽셀에서 원래 픽셀과 주변 픽셀에서의 깊이값, 노말값들로 업데이트를 위한 후보들을 만든다. 이후 각각의 후보들에 대해서 깊이값, 노말값, 컬러값들을 바탕으로 비용을 계산한다. 이후 가장 최적의 비용을 가지는 후보값으로 각 픽셀의 깊이값과 노말값을 업데이트한다. 이를 통해 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 장점을 합친 결합 조밀 깊이지도를 생성한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.66-67
/
2012
본 논문에서는 고정된 카메라로 촬영한 동영상에서 수퍼픽셀(superpixel)을 이용하여 전경 객체 영역을 효과적으로 검출하는 기법을 제안한다. 기존의 픽셀 기반 전경 객체 검출 기법들은 단위 픽셀에 대한 전/배경 판단을 수행하므로 실제 전경 객체 영역에 대한 정확한 검출이 어려운 단점을 지닌다. 수퍼픽셀은 성질이 유사한 픽셀들의 집합을 의미하며 영상의 과도한 분할에 주로 사용되었다. 본 논문에서는 이러한 수퍼픽셀을 이용하여 동영상의 각 프레임을 과도 분할하고, 분할된 각각의 수퍼픽셀을 전경 객체와 배경의 판단 단위로 이용한다. 제안하는 알고리듬을 적용하여 실험한 결과 기존의 픽셀 단위 검출 기법에서 나타났던 오검출을 줄임과 동시에 전경 객체의 형태를 보다 충실하게 검출함을 확인 할 수 있다.
In this paper, we present background modeling method based on Gaussian mixture model to subtract background for night-time video surveillance. In night-time video, it is hard work to distinguish the object from the background because a background pixel is similar to a object pixel. To solve this problem, we change the pixel of input frame to more advantageous value to make the Gaussian mixture model using scaled histogram stretching in preprocessing step. Using scaled pixel value of input frame, we then exploit GMM to find the ideal background pixelwisely. In case that the pixel of next frame is not included in any Gaussian, the matching test in old GMM method ignores the information of stored background by eliminating the Gaussian distribution with low weight. Therefore we consider the stacked data by applying the difference between the old mean and new pixel intensity to new mean instead of removing the Gaussian with low weight. Some experiments demonstrate that the proposed background modeling method shows the superiority of our algorithm effectively.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.147-157
/
2017
In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.848-850
/
2015
본 논문에서는 픽셀 그레디언트의 방향성 정보를 이용하여 복원하는 예제기반 인페인팅 방법을 제안한다. 제안하는 방법에서는 영상 내에서 픽셀 그레디언트의 방향성을 검출하여 강도가 높은 그레디언트를 가지는 픽셀들을 먼저 복원하는 특징을 가진다. 지역적인 그래디언트의 특성을 이용하여 복원 영역의 연결성을 높이고 에러의 파급 효과를 줄임으로써, 기존의 예제기반 인페인팅 방법보다 개선된 결과를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.