• Title/Summary/Keyword: 피폭 방사선량

Search Result 499, Processing Time 0.026 seconds

Image Evaluation according to Tube Current of X-ray Device for Intraoral Imaging (구내 촬영용 엑스선 장치의 관전류에 따른 영상 평가)

  • A Yeon Kim;Byungdu Jo;Seung-Jae Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.515-521
    • /
    • 2023
  • The radiation dose received by the patient varies according to the tube current and time used during dental intraoral imaging. A large amount of tube current is required for image quality, but the radiation dose to the patient increases accordingly. Therefore, in this study, the optimal amount of tube current that can reduce the radiation dose received by the patient while securing the image quality was calculated through the evaluation of the image quality according to the tube current used during intraoral imaging through simulation. The average tube current, time, and tube voltage presented in the Guidelines for Diagnostic Reference Level for intraoral radiography were used as basic imaging conditions, and images were obtained when only the tube current was changed, and then the optimal tube current was compared and analyzed with the basic image quantity was calculated. Images were obtained by changing the tube current to 0.1, 0.5, 1, 2, 3, 4 and 5 mA under the basic conditions of 63 kV, 6 mA, and 0.29 s. The obtained image was evaluated for structural similarity index with the image taken under the condition of 6 mA using the ICY program. As a result, even under the condition of 0.5 mA tube current, the index of structural similarity with the image of 6 mA was evaluated to be high. Based on these results, it is considered that the radiation dose given to the patient can be greatly reduced if imaging is performed at 0.5 mA instead of 6 mA during dental intraoral imaging.

Effective Doses in the Radial Gamma Radiation Field near a Point Source: Gender Difference and Deviation from the Personal Dose Equivalent (점선원 감마선장에서 유효선량의 성별차 및 개연선량당량과의 차이)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 1997
  • The individual dose equivalent, $H_p$, effective dose, E, and gender specific effective dose, $E^m$ and E$^f$, were evaluated using the male and female phantoms of MIRD type located in the radial gamma radiation field near a point source. The point sources were placed at the distances of 15, 40 and 100 cm in front of the body at different heights. Two radionuclides, $^{137}Cs$ and $^{131}I$, were selected for the illustrative examples. In terms of the gender specific effective doses, $E^f$ is higher than $E^m$ with a few exceptions, e.g. the case where the point source is at the height of reproductive organs, but the differences from the sex- averaged values are not significant enough to justify use of gender specific dose conversion factors for the radial gamma field. The ratios $H_p$/E were in the range of 1 to 3 depending on the source and dosimeter positions when the dosimeter is worn on the front surface of the torso covering from chest to lower abdomen, but varied from 0.34 to 6.5 in extreme cases. When it is assumed that the typical handling procedure of radioactive source material and the typical dosimeter position(on the chest) be respected, the dosimeters calibrated against the broad parallel field appear to provide estimates with acceptable errors for the effective dose of workers exposed to radial broad gamma field around a point source.

  • PDF

A Study on the Clarance Level for the Metal Waste from the KRR-1 & 2 Decommissioning (연구로 1,2호기 해체 금속폐기물의 규제해제농도기준(안) 도출을 위한 연구)

  • 홍상범;이봉재;정운수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The exposure dose form recycling on a large amount of the steel scrap from the KRR-1&2 decommissioning activities was evaluated, and also the clearance level was derived. The maximum individual dose and collective dose were evaluated by modifying internal dose conversion factor which was based on the concept of effective dose in ICRP 60, applied to the RESRAD-RECYCLE ver 3.06 computing code, IAEA Safety Series III-P-1.1 and NUREG-1640 as the assessment tool. The result of assessment for individual dose and collective dose is 23.9 ${\mu}Sv$ per year and 0.11 man$\cdot$Sv per year respectively. The clearance levels were ultimately determined by extracting the most conservative value form the results of the generic assessment and specific assessment methodologies. The result of clearance level for radionuclides($Co^60$, $Cs^137$) is less than $1.67{\times}10^{-1}$ Bq/g to comply with the clearance criterion(maximum individual dose : 10 $\muSv$ per year, collective dose : 1 man$\cdot$Sv per year) provided for Korea Atomic Energy Act and relevant regulations.

  • PDF

Operation Efficiency Estimation of PET/CT Center by Work Form and Exposure Dose (근무형태 및 피폭선량에 따른 PET/CT실의 운영 효율성 평가)

  • Kweon, Oh-Jin;Jung, Su-Hee;Baek, Seung-Chan;Kim, Kyeong-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.93-97
    • /
    • 2009
  • Purpose: Recognize circulation work system and fixing work system's merits and demerits that is enforced in operation of PET/CT center in sudden increase recently. Wish to estimate connectivity degree of individual exposure dose and PET/CT working that is managed periodically through this and look for operation efficiency of PET/CT center. Materials and Methods: (1) Find interrelationship of length of service to be individual exposure dose and PET/CT through TLD interpretation. Specially, evaluate on the basis of data of 2.5 years until 2 quarters 2006~2008 year that show patient increase rapidly the latest. (2) Recognize what countermeasure is evaluating problems happened at circulation work system and fixing work system. Results: Patient examination's number was 14,674 items until 2 quarters 2006~2008 year, and the $^{18}F$-FDG average injection amount was 461.5 MBq. 2 people of 10 radiotechnologist did fixing work PET area and GAMMA area each, and 8 people did circulation work of 3 times for 2.5 years. Average exposure dose that PET area and Gamma area's circulation men in service receive was 1.32 mSv, and PET area men in services came out average 0.825 mSv high than Gamma area men in services. Nurse's exposure dose is 0.28 mSv, and next 2 reason is conjectured. One is contact with patient that medicate $^{18}F$-FDG injection, and another is consultation about patient's next time schedule after examination end. Although exposure dose's amount is not much, is expected to consider continuation work possibility by exposure dose in case is a nurse with pregnancy possibility. Also, $^{131}I$-isotope therapy area's radiotechnologist that use capsule appeared by 0.12 mSv and a nuclear medicine doctor appeared by exposure dose that is less of 0.11 mSv. Conclusions: In case do PET/CT center circulation work after a long time, connoted danger that most men in service is consecutiveness deficiency of business and individual exposure dose increase at early 1 month. Specially, way for individual exposure dose's decrease should be considered. Also, need to evaluate abhorrent work form for efficient work system introduction, and enforce circulation and fixing work suggestion suitable shift working. Finally, must make normalized business guide and so on to prevent circulation work people's business efficiency decline.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

A Measurement of Exposure Dose for Patient Transporter (환자 이송원의 피폭선량 측정)

  • Song, Chaerim;Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.433-438
    • /
    • 2019
  • The medical institutions use radiation generating devices and radioactive isotopes to diagnose and treat patients. The patient transporter performs work in an environment that is more likely to be exposed to radiation when compared with the general public, such as inevitably entering the radiation management area for patient transfer, or transferring the isotope-administered patient at a short distance. For this reason, we conducted a study to determine the degree of exposure of the patient transporter. The 12 patient transporters working at Incheon A General Hospital are eligible. From April 1, 2019 to April 30, 2019, the dosimeter was used in the chest for one month and the accumulated dose was measured. The dosimeter used was a Optically Stimulated Luminescence Dosimetry (OSLD) and the dose reading was OSLD Microstar Reading System. As a result of cumulative dose measurement for one month, the average of the deep dose was 0.13 mSv and the surface dose was 0.13 mSv, and the cumulative dose for one month was multiplied by 12 to estimate the cumulative dose expectation As a result, the average of the deep dose and the surface dose were 1.52 mSv and 1.51 mSv, respectively. It is necessary to classify the patient transporter as a frequent visitor in order to measure and manage the exposure dose, increase the knowledge of protection against radiation through education and training, and prevent radiation trouble through medical examination.

천층처분시설에서의 주요 안전성인자 영향 분석

  • 박주완;김현주;김창락
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.193-193
    • /
    • 2004
  • 처분시설의 안정성 평가에 사용된 시나리오와 파라미터들은 본질적으로 불확실성을 가지고 있다. 이러한 불확시설성을 평가하기 위해서 동일한 시나리오에 대해서 평가 입력 파라미터의 변화에 따라 개인피폭선량 결과가 어떻게 변화하는지를 분석하였다. 본 분석에서는 처분시설을 빠져나온 핵종이 하부의 불포화된 토양층을 지나 대수층에 이른후 지하수에 의한 분산과 이류 등에 의해 인간환경의 우물까지 이동되고, 우물을 통해 다시 희석되어 부지 경계의 주민이 우물물을 식수로 사용하는 '지하수음용시나리오'가 고려되었다.(중략)

  • PDF

Calculation of Absorbed Dose for Immersion in Semi-Infinite Radioactive Cloud...(1) (반무한(半無限) 방사성운(放射性雲)에서의 흡수선량계산(吸收線量計算) - 1. 단일(單一)에너지 감마 방출체(放出體)에 대한 산난광자(散亂光子)스펙트럼의 계산(計算) -)

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.155-159
    • /
    • 1985
  • In general, dose rates for a monoenergetic gamma emitter uniformly distributed in an infinite cloud have been calulated by using the monoenergetic point-isotorpic source kernel technique. The most serious limitation on use of the kernel technique is subjected to the fact that it estimates the dose only at the surface of body. As a result, an alternative method is presented in which estimates of dose rate for immersion in a radioactive cloud are resulted from the scattered photon spectra incident on the surface of body. The results are in excellent agreement with other's. Work is currently in progress to apply these results to immersion dose problems associated with absorbed dose distribution in the MIRD phatom.

  • PDF

Analysis of Metabolism and Effective Half-life for Tritium Intake of Radiation Workers at Pressurized Heavy Water Reactor (중수로원전 종사자의 삼중수소 체내섭취에 따른 인체대사모델과 유효반감기 분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • Tritium is the one of the dominant contributors to the internal radiation exposure of workers at pressurized heavy water reactors (PHWRs). This nuclide is likely to release to work places as tritiated water vapor (HTO) from a nuclear reactor and gets relatively easily into the body of workers by inhalation. Inhaled tritium usually reaches the equilibrium of concentration after approximately 2 hours inside the body and then is excreted from the body with a half-life of 10 days. Because tritium inside the body transports with body fluids, a whole body receives radiation exposure. Internal radiation exposure at PHWRs accounts for approximately 20-40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Thus, tritium is an important nuclide to be necessarily monitored for the radiation management safety. In this paper, metabolism for tritium is established using its excretion rate results in urine samples of workers at PHWRs and an effective half-life, a key parameter to estimate the radiation exposure, was derived from these results. As a result, it was found that the effective half-life for workers at Korean nuclear power plants is shorter than that of International Commission on Radiological Protection guides, a half-life of 10 days.