• Title/Summary/Keyword: 피폭저감화

Search Result 67, Processing Time 0.029 seconds

A Study on the Gonads Exposure Dose of Upper Extremity Examinations in Sitting Position (앉은 자세 상지 X-ray 검사(Sitting Position Upper Extremity X-ray Examinations)에서 피폭선량 저감화 연구)

  • Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.189-193
    • /
    • 2011
  • Sitting position upper extremity X-ray examinations (SUEX) is the most widely used patient positioning method for upper extremity X-ray examinations. For this method, the radiation dose is considerable for relatively less interesting organs. We investigated whether patients need to wear the apron during the examination or not. We also studied the examination methods which can reduce the radiation dose. The results showed that radiation dose was reduced as the distance of source to patient becomes longer and the thickness of object grows higher.

Assessment of DRL for Computed Tomography in Local Hospital (지역병원에서의 전산화단층촬영 검사에 대한 DRL 평가)

  • Choi, Seok-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.619-625
    • /
    • 2022
  • In the field of imaging medicine, computed tomography is one of the most common test methods and one of the most frequently used test methods in hospitals. However, it is accompanied by a very high radiation exposure compared to other test methods. In order to reduce exposure, CT scans should be performed only when absolutely necessary, and even if the tests are performed because they are absolutely necessary, a protocol that serves the purpose of the test and allows the test to be performed in a small dose should be used. In this study, we wanted to learn about the most up-to-date radiation dose usage information used by the region's leading general hospitals and develop a diagnostic reference level (DRL). In the experimental results, the Head CT and Abdomen CT tests showed that DLP was higher than the NRPB (U.K) and Korean DRL. The DLP values used by Chest CT were low for all 3 types of CT devices. The hospital found that efforts to reduce exposure should be made during CT examinations, and in particular, Head CT and Abdomen CT determined that efforts to reduce exposure were necessary.

The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning (Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정)

  • Kim, Sung-Bin;Won, Do-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.667-674
    • /
    • 2019
  • Because examination with technegas produces images through simple diffusion accumulation, the examination room can become contaminated after scan. Therefore, radiation workers and patients awaiting examination will be affected by internal exposure from technegas inhalation. Before and after gravity ventilation, I am trying to find a way to reduce the exposure dose of waiting patients according to a comparative analysis of horizontal spatial dose rates over time. Spatial dose ratio were measured for 10 minutes from various distances and angles around ventilator's location before and after gravity ventilation. Then, mean values, standard deviation and reduction ratio were calculated. The highest reduction rate of gravity ventilation was 95.31% and the highest reduction ratio was 1 to 3 minutes. Therefore, the gravity ventilation could reduce the exposure dose of radiologic technologists, waiting patients, patient guardians and nurses. In conclusion, the reduction of the exposure dose during the technegas ventilation study through gravity ventilation will play a role in optimiging the protection and it is in accordance with the recommended reduction of the medical exposure by ICRP 103.