• Title/Summary/Keyword: 피폭선량 감소

Search Result 337, Processing Time 0.028 seconds

Application of Multi-Attribute Utility Analysis for the Decision Support of Countermeasures in Early Phase of a Nuclear Emergency (원자력 사고시 초기 비상대응 결정지원을 위한 다속성 효용 분석법의 적용)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • A multi-attribute utility analysis was investigated as a tool for the decision support of countermeasures in early phase of a nuclear accident. The utility function of attributes was assumed to be the second order polynomial expressions, and the weighting constant of attributes was determined using a swing weighting method. Because the main objective of this study focuses on the applicability of a multi-attribute utility analysis as a tool for the decision support of countermeasures in early phase of a nuclear accident, less quantifiable attributes were not included due to lack of information. In postulated accidental scenarios for the application of the designed methodology, the variation of the numerical values of total utility for the considered actions, e.g. sheltering, evacuation and no action, was investigated according to the variation of attributes. As a result, it was shown that the numerical values of total utility for the actions are distinctly different depending on the exposure dose and monetary value of dose. As increasing in both attributes, the rank of the numerical values of total utility increased for evacuation, which is more extreme action than for sheltering, while that of no action decreased. As expected probability of high dose is higher, the break-even values for the monetary value of dose, which are the monetary value of dose when the ranking of actions is changed, were lower. In audition, as aversion psychology for dose is higher, the break-even values for dose were lower.

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

Shielding Effect according to the Direction of Control Room Door Opening during Radiography (방사선촬영 중 제어실 문의 열린 방향에 따른 차폐효과)

  • Choi, Weon-Keun;Kim, Jung-Hoon;Kang, Bo-Sun;Bae, Seok-Hwan;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3347-3352
    • /
    • 2010
  • It is recommended that the door of control room is closed during radiography to protect a radiologic technologist. However, for those patients such as of emergency or pediatrics, the door must be kept open unavoidably to apply immediate medical administration and treatment on the potential case of emergency which could be happened through the course of radiography. In addition, it could be efficient by reducing patients waiting time when the door is open for a general case. This study was conducted to evaluate practical exposure rate to a radiologic technologist when the door is open during the radiography, and to find out the ways to minimize radiation exposure and to increase the efficiency simultaneously. Measuring practical exposure rate was fulfilled with glass dosimeter, and it was 2.02 mGy/week at the location of radiologic technologist under the condition that the door is open during the radiography, which was about 2.3 times higher than the 100 mR/week. It means that the considerable amount of scattered rays through the door opening, and increase exposure rate at the radiologic technologist. Hence we confirmed that a radiologic technologist probably overexposed if the door is open during the radiography. It was also confirmed by the Monte Carlo simulation that the exposure rate could be reduced up to approximately 1/100 by change only the door opening direction. In conclusion, since the proper door opening direction provides same shielding effect whether it is open or close, the door opening direction need to be considered when it is installed at radiography facilities.

Reducing Radiation Exposure During X-ray Imaging of Both Hip AP (엉덩관절 정면 검사 시 환자 피폭 감소)

  • Shin, Seong-Gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • This research has been conducted to investigate the method of reducing patients' radiation exposure during X-ray imaging of Both Hip Ap examination by removing the grid. When using the grid with 60 kV and a non-filter, the Entrance Surface Dose was 4.77 mGy, and the result was highest and 34 times higher than the lowest measurement when removing the grid with 90 kV, and 0.3 mmCu filter. Based on the ICRP Pub. 60 at the level of 70 kV, the Effective Dose of testis and ovary was 0.255 mSv when using the grid, and that result was approximately 5.2 times higher than the 0.049 mSv when removing the grid. Based on the ICRP Pub. 103 at the level of 70 kV, the Effective Dose of testis and ovary was 0.090 mSv when using the grid, and that result was approximately 4.5 times higher than the 0.020 mSv when removing the grid. When using the grid, the range of Exposure Index was 671 to 782, and when removing the grid, the range of Exposure Index was 513 to 606, and both results were at optimal exposure conditions and valid diagnostic imaging after evaluations. Therefore, removing the grid during X-ray imaging of Both Hip Ap will help reduce patients radiation exposure.

A Study on Reduction of Radiation Exposure by Nuclear Medicine Radiation Workers (핵의학 방사선 작업종사자 피폭 감소 방안에 대한 연구)

  • Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • This study investigated the shielding efficiency of various types of shielding materials and measured the dose by organ using the phantom. Results of Shielding Efficiency Measurement Using Personal Radiation Meter. Among the various shielding materials, 1.1 mm RNS-TX composed of nano tungsten showed the highest shielding efficiency and 0.2 mm lead shielding showed the lowest shielding efficiency. 99mTc 30 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 20.53 mSv without radiation protective clothing, 8.75 mSv when wearing 0.25 mm Pb protective clothing, 6.03 mSv when wearing 0.5 mm Pb protective clothing. 131I 2 mCi mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 7.71 mSv without radiation protective clothing, 4.88 mSv when wearing 0.25 mm Pb protective clothing, 2.79 mSv when wearing 0.5 mm Pb protective clothing. 18F 5 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 16.39 mSv without radiation protective clothing, 15.84 mSv when wearing 0.25 mm Pb protective clothing, 12.52 mSv when wearing 0.5 mm Pb protective clothing. None of the radiation workers working in the nuclear medicine department exceeded the dose limit. However, when compared with other workers in the hospital, they showed a relatively high dose. Therefore, it is necessary to prepare measures to reduce and manage the dose of radiation workers in the nuclear medicine department through the wearing of radiation protective clothing made of lightweight, shielding material with good shielding efficiency, circulation task, task sharing, and substitution equipment such as auto dispenser.

Optimization of the Empirical Method to the Enhancement Image of the Four Chambers at the Same Time in the Pediatric Cardiac Computed Tomography (소아 심장 전산화단층촬영 검사에서 4 chamber의 동시 조영증강 영상에 대한 최적화 방안)

  • Park, Chanhyuk;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.279-285
    • /
    • 2014
  • This study is to have dose reduction and minimization of excessive use of contrast medium in the pediatric cardiac computed tomography and to suggest the optimization plan to acquire the enhancement image of the 4 chambers at the same time by formulating scan delay time in empirical method with considering variables such as contrast medium injection velocity and cardiac approaching time. Quantitative, qualitative and dose assessment were carried out for 30 pediatric patients who had taken the cardiac examination. In conclusion, image enhancement in 4 chambers of the cardiac shows over 300 HU which is proper to pediatric cardiac reading by applying the empirical method with calculating scan delay time according to weight and contrast medium volume and injection velocity. Qualitative image assessments in confidence sharpness and noise have excellence qualitatively. Exposure dose to pediatrics also decreases precisely. Therefore this study is judged to take a important role of making optimization images with advantages of dose reduction and less side effects caused by it's excessive use in clinic.

Application of Low-Dose CT for Screening of Lung Disease (폐질환의 선별검사를 위한 저선량 전산화 단층촬영의 적용)

  • Lee, Won-Jeong;Choi, Byung-Soon;Park, Young-Sun;Seon, Jong-Ryul;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.129-140
    • /
    • 2009
  • As CT has been increasingly used as an accurate screening tool for lung disease, radiation dose becomes an important issue for both radiographers and patients. Many researches have been done for a low-dose CT as a screening tool for early detection of asymptomatic lung diseases. From those studies, it has been reported that chest dose rate from the low-dose CT is considerably lower than from standard CT. The patient dose is determined by scanning parameters such as kVp, mAs, pitch, scan time and the radiation risk of lung in screening examination may not be negligible. Herein, we suggest that Low-dose CT is useful as a screening tool in routine clinical practice on the basis of published articles, but further study is necessary because Low-dose CT has poor sensitivity and specificity for screening early stage of lung cancer according to the results of the studies. This article is to provide a brief overview of the screening examinations by Low-dose CT.

  • PDF

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

A Study on the Reduction of Scattered Ray in Outside Radiation Field (조사야 외부의 산란선량 감소 방법에 관한 연구)

  • Je, Jaeyong;Jang, Howon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.539-543
    • /
    • 2016
  • In this research, The way to decrease a patient's exposure dose by reducing the scattered radiation dosage outside a radiation field with an diagnosis X-ray was examined. The scattered radiation dosage reaching other parts outside the radiation field was to be reduced by attaching a self-produced $150{\times}190mm^2$ lead plate to the lower part of a collimator. When a lead plate was inserted additionally and the scattered radiation dosage of the X axis was measured in the direction of the central X-ray axis, It was found out to have been decreased by 26 to 36%, and in the direction of Y axis, which was vertical direction from the central axis, The scattered radiation dosage depending on whether a lead plate was used or not displayed no large differences. These results shows that the impact of the scattered radiation by the off focus X-ray that was generated around the focus was bigger than that generated by the shutter of the collimator. Therefore it has been concluded that installing an additional lead plate in the lower part of the existing collimator can decrease the scattered radiation dosage outside a radiation field.