• Title/Summary/Keyword: 피탄 충격

Search Result 6, Processing Time 0.017 seconds

Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck (근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석)

  • Kang, Moon Jeong;Jo, Young Nam;Chae, Jeawook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Ballistic impact on a soldier wearing a helmet can induce fatal injury, even if the helmet is not penetrated. Although studies on this type of injury have been performed, most of them have used an analytical model focused on head injury only. The injury of the neck muscles and cervical vertebrae by non-penetrating ballistic impact affects the survivability of soldiers, despite not inflicting fatal injury to the human body. Therefore, an analytical model of the head and neck muscles are necessary. In this study, an analysis of human body injury using the previously developed head model, as well as a cervical model with muscles, was performed. For the quantitative prediction of injury, the stress, strain, and HIC were compared. The results from the model including the cervical system indicated a lower extent of injury than the results from the model excluding them. The results of head injury were compared with other references for reliability.

Development of Fire Control System with an Analysis of Impact Vibration and Impact Energy (충격체의 진동 및 충격량 분석을 이용한 사격 통제장비 개발)

  • Lee, Dong-Hee;Lee, Jong-Heon;Youn, Ju-Houc;Park, Noh-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • This paper presents a development of a fire control system with an intelligent judgment algorithm of hit or not. The presented algorithm analyzes an impact energy and impact signals according to impact materials. And the detected signals are used to judge the correct hit or not. Furthermore, Zigbee wireless communication technology is applied in the developed fire control system. The wireless communication technology can supply a simple installation of the practical system and free from ageing of communication wire. The presented system is verified in the practical fire test, and the results show the effectiveness of the development system.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft using Smoothed Particle Hydrodynamics (입자법을 이용한 회전익항공기 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2553-2558
    • /
    • 2014
  • Military rotorcraft should be designed taking into account the condition of the fuel cell bullet impact. The internal fluid pressure, stress of metal fitting and fuel cell, bullet kinetic energy can be included as the design factor for the fuel cell. The best way to obtain the important design data is to conduct the verification test with actual product. But, the verification test requires huge cost and long-term effort. Moreover, there is high risk to fail because of the sever test condition. Thus, the numerical simulation is required to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact simulation based on SPH(smoothed particle hydrodynamics) is conducted with the commercial package, LS-DYNA. As the result of the numerical simulation, the internal pressure of fuel cell is calculated as 350~360MPa and the equivalent stress caused by hydro-ram effect is predicted as 260~350MPa on metal fittings.

A Numerical Study on the Shock Behavior of Multi-layered Panels (다층 패널의 피탄충격거동에 관한 수치해석적 연구)

  • Park, Chan-Young;Yang, Hong-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je;Koo, Man-Hoi;Joo, Jae-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.986-992
    • /
    • 2011
  • In this paper, the characteristics of shock behavior of multi-layered panels under impact were studied. The panels consist of four different lightweight materials including al, al-foam, rubber and FRP in order to enhance their shock energy absorption. A commercial code, Ls-dyna was used to build the numerical model and study shock behavior based on the analysis of shock response spectrum and peak response acceleration. The reliability of the numerical model was estimated by its comparison with the experimental results acquired under the same impact conditions.

Analysis on the Ballistic and Blast Shock for a Space Frame Structure (내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석)

  • Joo, Jae-Hyun;Gimm, Hak-In;Koo, Man-Hoi;Park, Jee-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.

A Network Analysis of Ballistic Helmet Technology Keyword (방탄헬멧 기술분야 키워드에 대한 네트워크 분석)

  • Kang, Jinwoo;Park, Jaewoo;Kim, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • The network analysis method has emerged as a new methodology for various disciplines, due to its ability to provide a representative knowledge network of references, co-authors and keywords. Bulletproof technology is an interdisciplinary field involving various disciplines, such as material mechanics, structural mechanics, and ballistics, so it is essential to keep up with the recent trends in technological research. In this research, the recent R&D trends in the field of bulletproof materials were analyzed using keyword based network analysis. From the results, the core keywords were identified as 'Composite', 'Model' and 'Head' using the scholar search engine, google scholar. The centrality analysis for the core keywords showed that bulletproof technology has developed in 3 different areas, viz. material, structure and effects. To the best of our knowledge, this is the first application of (network analysis?) to bulletproof technology. Moreover, we are also convinced that the results of this study will be useful for defense technology planning and determining the direction of R&D in the field of bulletproof technology.