• Title/Summary/Keyword: 피크 탐지

Search Result 24, Processing Time 0.024 seconds

Single Ping Clutter Reduction Algorithm Using Statistical Features of Peak Signal to Improve Detection in Active Sonar System (능동소나 탐지 성능 향상을 위한 피크 신호의 통계적 특징 기반 단일 핑 클러터 제거 기법)

  • Seo, Iksu;Kim, Seongweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In active sonar system, clutters degrade performance of target detection/tracking and overwhelm sonar operators in ASW (Antisubmarine Warfare). Conventional clutter reduction algorithms using consistency of local peaks are studied in multi-ping data and tracking filter research for active sonar was conducted. However these algorithms cannot classify target and clutters in single ping data. This paper suggests a single ping clutter reduction approach to reduce clutters in mid-frequency active sonar system using echo shape features. The algorithm performance test is conducted using real sea-trial data in heavy clutter density environment. It is confirmed that the number of clutters was reduced by about 80 % over the conventional algorithm while retaining the detection of target.

Damage Detection of Structures using Peak and Zero of Frequency Response Functions (주파수 응답함수의 피크와 제로를 이용한 구조물의 손상탐지)

  • Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.69-79
    • /
    • 2007
  • In this paper, a technique to detect structural damage and estimate its severity using peaks and zeros of frequency response functions (FRFs) is developed. The peaks in FRFs represent the natural frequencies of the structure and the zeros provide additional information. The characteristics of peaks and zeros are defined and the calculation procedure to obtain the peaks and zeros from the relationship between frequency response function and stiffness and mass matrices are clearly explained. A structural system identification theory which is utilizing the sensitivity of stiffness of a structural member to eigenvalues, i.e., peaks and zeros, is established. The proposed method can identify damage location and its severity, with natural and zero frequencies, by estimating structural stiffness of the structure in the process of making a analytical model The accuracy and feasibility is demonstrated by numerical models of a spring-mass system and a beam structure.

Audio Fingerprinting Using a Robust Hash Function Based on the MCLT Peak-Pair (MCLT 피크쌍 기반의 강인한 해시 함수를 이용한 오디오 핑거프린팅)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.157-162
    • /
    • 2015
  • In this paper, we propose an audio fingerprinting using robust hash based on the MCLT (Modulated Complex Lapped Transform) peak-pair. In existing methods, the robust audio fingerprinting is not generated if various distortions occurred; time-scaling, pith-shifting and equalization. To solve this problem, we used the spectrum of the MCLT, an adaptive thresholding method for detection of prominent peaks and the novel hash function in the audio fingerprinting. Experimental results show that the proposed method is highly robust in various distorted environments and achieves better identification rates compared to other methods.

Nondestructive Testing of Welding Flaw at Gas Pipeline by Measuring Magnetic Flux Leakage (누설자속 측정에 의한 가스배관의 용접결함에 대한 비파괴 탐상)

  • Ryu, Kwon-Sang;Park, Soo-Yung;Kim, Yong-Il;Lee, Wan-Kyu;Lim, Jae-Kyun;Nam, Young-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • We have developed a system for nondestructive measurement of the magnetic flux leakage at welding flaws, existing in a gas pipeline by Hall sensor. For measuring the magnetic flux leakage, we designed a reference specimen having four kinds of welding flaws. Magnetic flux leakage is measured around the welding flaws of the specimen. The possibility for classification of different kinds of welding flaws is carried out by means of the peak-peak value and the interval between peak-peak of the magnetic flux leakage.

  • PDF

Real-time Moving Object Detection Based on RPCA via GD for FMCW Radar

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.103-114
    • /
    • 2019
  • Moving-target detection using frequency-modulated continuous-wave (FMCW) radar systems has recently attracted attention. Detection tasks are more challenging with noise resulting from signals reflected from strong static objects or small moving objects(clutter) within radar range. Robust Principal Component Analysis (RPCA) approach for FMCW radar to detect moving objects in noisy environments is employed in this paper. In detail, compensation and calibration are first applied to raw input signals. Then, RPCA via Gradient Descents (RPCA-GD) is adopted to model the low-rank noisy background. A novel update algorithm for RPCA is proposed to reduce the computation cost. Finally, moving-targets are localized using an Automatic Multiscale-based Peak Detection (AMPD) method. All processing steps are based on a sliding window approach. The proposed scheme shows impressive results in both processing time and accuracy in comparison to other RPCA-based approaches on various experimental scenarios.

A Study on Possibility of Detection of Insulators' Faults by Analyses of Radiation Noises from Insulators (애자의 소음 분석을 통한 애자 고장 탐지 가능성 연구)

  • Park, Kyu-Chil;Yoon, Jong-Rak;Lee, Jae-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.822-831
    • /
    • 2009
  • The porcelain insulators are important devices, that are used to isolate electrically and hold mechanically in the high-voltage power transmission systems. The faults of the insulators induce very serious problems to the power transmission line. In this paper, we introduce techniques for fault detections of insulators by acoustic radiation noises from them. We measured radiation noises from normal state insulators and fault state insulators. The used insulators were two different type porcelain insulators, a cut out switch, two different type line posters, and a lightning arrester. Each results was compared each other in time domain, frequency domain and filter banks' outputs. We found the possibility of detection of insulators' faults and also suggested techniques for fault detections.

Waveform Decomposition of Airborne Bathymetric LiDAR by Estimating Potential Peaks (잠재적 피크 추정을 통한 항공수심라이다 웨이브폼 분해)

  • Kim, Hyejin;Lee, Jaebin;Kim, Yongil;Wie, Gwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1709-1718
    • /
    • 2021
  • The waveform data of the Airborne Bathymetric LiDAR (ABL; LiDAR: Light Detection And Ranging) system provides data with improved accuracy, resolution, and reliability compared to the discrete-return data, and increases the user's control over data processing. Furthermore, we are able to extract additional information about the return signal. Waveform decomposition is a technique that separates each echo from the received waveform with a mixture of water surface and seabed reflections, waterbody backscattering, and various noises. In this study, a new waveform decomposition technique based on a Gaussian model was developed to improve the point extraction performance from the ABL waveform data. In the existing waveform decomposition techniques, the number of decomposed echoes and decomposition performance depend on the peak detection results because they use waveform peaks as initial values. However, in the study, we improved the approximation accuracy of the decomposition model by adding the estimated potential peak candidates to the initial peaks. As a result of an experiment using waveform data obtained from the East Coast from the Seahawk system, the precision of the decomposition model was improved by about 37% based on evaluating RMSE compared to the Gaussian decomposition method.

Mutual Coupling Compensation and Direction Finding for Anti-Jamming 3D GPS Antenna Array (항재밍 3차원 GPS 배열 안테나를 위한 Mutual coupling 보상 및 재밍 방향탐지 알고리즘)

  • Kang, Kyusic;Sin, Cheonsig;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.723-730
    • /
    • 2017
  • In this paper, we consider an online compensation algorithm considering the mutual coupling and suggest a new GPS antenna array to apply. To evaluate the anti-jamming performance for the proposed antenna array, ULA and URA, we divide direction finding of multiple jamming signals into environments. 1. there is no mutual coupling. 2. there is mutual coupling but no compensation. 3. mutual coupling is compensated. RMSE analysis showed that the online compensation algorithm works and that peak detection is possible for multiple jamming signals.

Flex-FFT for Learning Motor Fault Detection in Collaborative Robots (협동 로봇의 모터 결함 탐지 학습을 위한 선택적 FFT 기법)

  • Choe, Min-Seo;Yu, Dong-Yeon;Lee, Jeong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.586-588
    • /
    • 2022
  • 산업용 설비의 결함을 예측하기 위해 기기에 탑재된 다양한 센서의 시계열 데이터를 이용한 결함 진단 연구가 확대되고 있다. 센서의 시계열 데이터는 값의 특성이 명확하지 않을 경우, 특징 추출이 제한적이지만, 주파수 영역으로 변환하면 진폭, 피크 주파수 등 데이터의 정보를 다각도로 담고 있어 특성을 추출하는 데에 이점이 있다. 따라서, 본 논문은 FFT(Fast Fourier Transform) 기법을 이용해 분해된 데이터를 조합하여 학습에 적용하는 선택적 FFT 기법을 제안한다. 제안 기법은 협동 로봇의 진동 신호를 이용한 결함 진단에 적용하였으며, 기존 결함 진단 정확도 대비 최대 41.81% 향상된 성능을 보였다.

A Study on the Estimation of Wind Velocity in Asymmetric Doppler Spectra of Weather Signals (비대칭 도플러 스펙트럼 기상신호에서의 풍속 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1753-1759
    • /
    • 2009
  • A weather radar as one of the remote sensing devices to analyze the weather phenomena receives the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. These received Doppler weather spectra are analyzed to extract the various characteristic weather information. The mean wind velocity is one of the important weather parameters which can be obtained by a weather radar ed it may be useful in the prevention of weather hazards occurred by the abrupt shift of wind in small geographical scales such as microbursts. It is usually estimated by pulse pair method which is considered to be reliable and very efficient in the computational requirement. However, there are some problems in the accurate estimation of the mean velocity if Doppler spectra of weather signals appear to be asymmetric gaussian or multi-peak spectra. Therefore, in this paper, the problems in the mean estimation of asymmetric Doppler spectra are analyzed and the improved method is suggested.