• Title/Summary/Keyword: 피크검출기

Search Result 107, Processing Time 0.024 seconds

Peak detection of immunoassay-strip scan signals using template matching (템플릿 정합법을 이용한 면역 검사 스트립 스캔 신호의 피크 검출)

  • Cho, Sang-Yeon;Kim, Jong-Dae;Kim, Yu-Seop;Park, Chan-Young;Song, Hae-Jung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.172-175
    • /
    • 2011
  • 본 연구에서는 현장검사 (Point-of-Care Testing, POCT)를 목적으로 측방 유동 검사 스트립의 피크들을 분리하는 템플릿 정합법을 제안한다. 템플릿은 스트립의 제어 리건드 선과 대상 리건드 선 간격으로 떨어져 있는 두 개의 펄스로 구성된다. 이 템플릿을 스캔신호와 정합시켜 최대 응답 위치에서 피크들의 중심을 찾고, 주어진 위치에서 피크들을 분리한다. 제안한 방법을 바디텍메드사의 당화 혈색소 면역 검사 스트립과 동사의 형광 스트립 리더기에 적용하여 농도 측정 성능에 미치는 영향을 기존에 구현된 방법과 비교 검토하였다. 실험 결과 본 연구에서 제안한 방법은 장치나 검사 스트립에 종속적인 매개변수가 필요한 기존 방법과 동등한 성능을 보였다.

Survey on microcalorimetry about EDS (에너지 분산형 미세열량측정에 관한 자료조사)

  • Kim, J.H.;Park, K.S.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • We have surveyed on microcalorimetry which we can treat with energy dispersive spectrometer(EDS) as wavelength dispersive spectrometer(WDS), to be developed in order to make higher energy resolution as to detect X-ray peak as high as wavelength dispersive spectrometer(WDS). When we take into consideration about energy resolution, Wavelength dispersive spectrometer is 2~20eV and energy dispersive spectrometer is 140~180eV.

A Design of Transceiver for 13.56MHz RFID Reader using the Peak Detector with Automatic Reference Voltage Generator (자동 기준전압 생성 피크 검출기를 이용한 13.56 MHz RFID 리더기용 송수신기 설계)

  • Kim, Ju-Seong;Min, Kyung-Jik;Nam, Chul;Hurh, Djyoung;Lee, Kang-Yun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, the transceiver for RFID reader using 13.56MHz as a carrier frequency and meeting International Standard ISO 14443 type A, 14443 type B and 15693 is presented. The receiver is composed of envelope detector, VGA(Variable Gain Amplifier), filter, comparator to recovery the received signal. The proposed automatic reference voltage generator, positive peak detector, negative peak detector, and data slicer circuit can adjust the decision level of reference voltage over the received signal amplitudes. The transmitter is designed to drive high voltage and current to meet the 15693 specification. By using inductor loading circuit which can swing more than power supply and drive large current even under low impedance condition, it can control modulation rate from 30 percent to 5 percent, 100 perccnt and drive the output currents from 5 mA to 240 mA depending on standards. The 13.56 MHZ RFID reader is implemented in $0.18\;{\mu}m$ CM08 technology at 3.3V single supply. The chip area excluding pads is $1.5mm\;{\times}\;1.5mm$.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.

Feasibility about the Direct Measurement of 226Ra Using the Gamma-Ray Spectrometry (감마분광분석을 이용한 226Ra의 직접 측정방법에 대한 적용성 평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lim, Jong-Myoung;Kim, Change-Jong;Jang, Mee;Kang, Mun Ja;Park, Sang Tae;Woo, Zuhee;Koo, Boncheol;Seo, Bokyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • In the case of the direct measurement of $^{226}Ra$ using a HPGe gamma-ray spectrometer, the interference between gammarays with 186.21 keV of $^{226}Ra$ and 185.7 keV of $^{235}U$ should be corrected to calculate the net peak area in the energy spectrum. In general, it is very difficult to conduct peaks stripping with difference of about 0.5 keV, although a HPGe with the superior resolution is applied and the maximum channels is applied to the spectrometer. In this study, several interference correction techniques in the direct measurement were surveyed to evaluate the feasibility for the measurement of $^{226}Ra$ using the gamma-ray spectrometery. Applying the interference corrections to the analysis of raw materials and by-products, the method validation for the direct measurement of $^{226}Ra$ was conducted by evaluating the measurement uncertainty, linearity, and range. As a result, the optimum method of the interference correction was selected by comparing with the indirect measurement of which progenies of $^{226}Ra$, such as $^{214}Pb$ and $^{214}Bi$, were analyzed in the secular equilibrium state.

A Design of the RF Signal Detector for Mobile Communication (이동통신용 RF 신호 검파기 설계)

  • An Jeong-Sig;Kim Kye-Kook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.185-189
    • /
    • 2004
  • In this paper, designed a diode detector and a log chip detector for mobile communication, and its application is proposed by compared results. In practice, fabricated a diode detector have showed detection voltage of $0{\sim}0.7V$ to RF input power of $-40dBm{\sim}-10dBm$, therefore it has suitable characteristic for small variable signal detection. And a log chip detector have showed wide dynamic range of 65dB, and $1.5{\sim}4.5V$ detection voltage to RF input power of $-65dBm{\sim}0dBm$. therefore we have found that it suit peak power measurement because it had insensible output detection voltage.

  • PDF

A Study On a Pitch Detection in Time-Frequency Hybrid Domain (시간-주파수 혼성 피치검출기의 성능개선에 관한 연구)

  • Jo Wang-rae;Kim Jong-kuk;Bae Myung-jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.107-110
    • /
    • 2004
  • 본 논문에서는 시간-주파수 혼성 영역 피치 검출법을 제안하였다. 음성신호를 주파수 영역으로 변환하고 주파수 영역에서 위상 성분을 조절하여 시간영역으로 역변환 함으로써 피치 피크가 최대가 되도록 하여 용이한 피치검출이 가능하였다. 또한 처리시간을 단축하기 위하여 FFT와 IFFT의 비트 재정렬을 생략하여 처리할 수 있는 방법을 제안하였다. 성능 측정 결과 기존의 켑스트럼 검출법에 비하여 검출성능은 우수하면서도 처리시간은 $84.8\%$로 단축됨을 알 수 있었다.

  • PDF

A Peak Detector for Variable Frequency Three-Phase Sinusoidal Signals (가변주파수 3상 정현파 신호의 최대전압 검출기)

  • 김홍렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 1999
  • The proposed detector is consists of three-phase sinusoidal signal generator and peak detector. This peak detector can detect the peak voltage value at the state of variable frequency. In experi-ment three-phase sinusoidal signals are generated from D/A converter using IBM PC and deliv-ered to the peak detector. Each signals are squared by multiplier and summed up Peak value is the square root of summed value extracted by square root circuit.

  • PDF

Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera (이중 모드 컴프턴 카메라의 측면 흡수부 제작을 위한 신호처리회로 개발)

  • Seo, Hee;Park, Jin-Hyung;Park, Jong-Hoon;Kim, Young-Su;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.