• Title/Summary/Keyword: 피어싱 공정

Search Result 34, Processing Time 0.02 seconds

Optimization Analysis for Realization of Vertical Wall in the Punchless Piercing Process (무 펀치 피어싱 공정에서 직벽 구현을 위한 최적화 해석)

  • Lee, Sang-Wook;Um, Tai-Joon;Joo, Young-Cheol;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • In this work, optimization analysis has been accomplished to find important process factors for realization of vertical wall around holes punched by the punchless piercing process. Taguchi method was used for optimization analysis. Lemaitre damage theory, one of the ductile fracture models, was also adopted to simulate numerically formation of vertical wall. From the results of analysis the most influencing factor that affects the vertical wall has been revealed to be 'Corner Radius of Die'.

Analysis for Realization of Vertical Wall in Holes by Applying Alternate High Pressure in the Punchless Piercing Process (무 펀치 피어싱 공정에서 교번식 고압 적용을 통한 구멍 내 직벽 구현 해석)

  • Lee, Sang-Wook;Um, Tai-Joon;Joo, Young-Cheol;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.929-934
    • /
    • 2009
  • In this work, the punchless piercing process with application of alternate high pressure has been proposed as a method to obtain pierced holes having nearly vertical wall over thin metal plates. The numerical simulation considering Lemaitre damage model has been accomplished for the proposed method. The simulated results have been compared with those by conventional one-way punch less piercing process. It has been revealed that the fractured section made by pressure alternation method shows nearly steep wall where the deviation angle from the vertical line is as small as $3.6^{\circ}$.

Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals (이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계)

  • Kim, Dong-Bum;Lee, Mun-Yong;Park, Byung-Joon;Park, Jong-Kweon;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.802-807
    • /
    • 2012
  • Self-piercing rivet is sheet joining method. It is being used more to join aluminum alloy sheets. Self-piercing riveting is a large-deformation process that involves piercing. The self-piercing rivet, under the press from the punch, pierces the top sheet and forms a mechanical interlock with the bottom sheet. In this study, forging process was designed for manufacturing self-piercing rivet. The forging process has been simulated by using commercial FEM code DEFORM-2D. In simulation of forging process for manufacturing rivet, process sequence, formability, forging load, and distributions of stress and strain were investigated. The suitable forging process could be designed by comparisons of simulation results. The developed process consists of four stages: upsetting, first chamfering, back extrusion, and second chamfering. The simulated results for forging process were confirmed by experimental trials with the same conditions.

Finite element analysis of unconstrained axisymmetric piercing (구속이 없는 축대칭 피어싱 공정의 유한요소해석)

  • 양동열;유요한;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.876-888
    • /
    • 1986
  • The Study is concerned with the analysis of unconstrained axisymmetric piercing as a nonsteady forging process by the rigid-plastic finite element method. In the numerical analysis of axisymmetric piercing, the initial velocity field is generated by assuming the material as a linear viscous material to begin with in order to facilitate the input handling and to ensure better convergencey. The strain-hardening effect for nonsteady deformation and the friction of the die-material interial interface are considered in the formulation. Rigid body treatment is also incorporated in the developed program. The experiments are carried out for aluminum alloy specimens (A1204) with different specimen heights. It is shown that the experimental results are in excellent agreement with the finite element simulations is deformed configuration. For load prediction the theoretical prediction shows excellent agreement with th eexperimental laod in the initial stage of loading before fracture of the specimen is not initiated. Distribution of stresses, strains and strain rates has been found for the given cases in computation. On this basis several fracture criteria are introduced in order to check the fracture initiation. It is found that maximum shear criterion is capable of good fracture prediciton.

A Comparative Analysis between 2D and 3D Modeling in the Piercing Process of Lead Frame and Experimental Study (리드프레임 피어싱 공정의 2D와 3D 모델링 비교해석 및 실험적 연구)

  • Bang, H.J.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.288-291
    • /
    • 2006
  • Piercing or blanking process is widely used to manufacture most of lead frame parts, but it is difficult to analyze the real process by the actual shape through progressive dies. In this paper several stages in progressive punching are modeled by 2D and 3D configurations using $DEFORM^{TM}$ 2D/ 3D code. During the progressive stage some state variables and deformed configurations are analyzed in each model. There are three stages in the process, the deformations at each stage are cumulative. The advantages and disadvantages of these two type modeling are discussed and analyzed. The experiments are performed as a working material copper alloy through manufactured die. Computed results in load by two types are compared to experiments.

  • PDF

Development of an Automated Progressive Design System for Manufacturing Product with Multi Processes, Piercing, Bending, and Deep Drawing (복합공정(피어싱, 벤딩, 디프드로잉)을 갖는 제품 제조를 위한 프로그레시브 설계 자동화 시스템 개발)

  • Hwang, Beom-Cheol;Kim, Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.55-64
    • /
    • 2008
  • This paper describes a research work of developing an automated progressive design system for manufacturing the product with multi processes such as piercing, bending, and deep drawing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system consists of three main modules, which are shape treatment, strip layout, and die layout modules. Based on knowledge-based rules, the system is designed considering several factors, such as material and thickness of a product, piercing, bending and deep drawing sequence, and the complexities of the blank geometry and punch profiles. It generates the strip layout drawing for an automobile product. Die design for each process is carried out through the die layout module from the results of the strip layout module. Results obtained using the modules enable the designers for manufacturing products with multi processes to be more efficient in this field.

An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working (굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle (플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.

An Automated Process Planning and Die Design System for Blanking of Stator and Rotor Parts (스테이터 및 로터의 블랭킹에 관한 공정설계 및 금형설계 시스템)

  • Park, J.C.;Kim, M.M.;Lee, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.40-51
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing progressive die for stator and rotor parts. An approach to the system is based on knowledge based rules. The deveolped system is composed of six modules such as main program, input and shape treatment, production feasibility check, strip layout, die layout and drawing edit module. Using this system, design parameters ( geometric shapes, die and punch dimensions and dimensions of tool elements) are determined and output is gen- erated in graphic from. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blkanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF