• 제목/요약/키워드: 피어슨 시스템

검색결과 74건 처리시간 0.025초

반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계 (Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System)

  • 백석흠;조석수;주원식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

사용자 행동 기반 다속성 태도 모델 기반의 유사도 측정 연구 (A Study on User behavior-based multi-attribute attitude models and based on cross-correlation)

  • 안병익;정구임;최혜림
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.554-557
    • /
    • 2016
  • 2015년 우리나라 스마트폰 보급률이 83%에 다다르고 인터넷 정보 검색은 PC보다 모바일이 추월한지 오래다. 범람하는 정보 안에서 편하고 빠른 것에 익숙해진 사용자들은 이제 개인화된 맞춤형 추천 정보의 제공을 원한다. 맞춤형 추천을 위해서는 사용자의 행동을 이해하고 추천하는 것이 필요하다. 현재 대중화된 개인 추천 서비스는 책과 영화가 있는데 생활에 많은 부분을 차지하고 있는 음식점 방문에 대해서도 맞춤형 추천 서비스를 제공해 줄 수 있다. 본 논문에서는 음식점 방문에 대한 비슷한 태도를 보인 사용자를 추출한 후 방문했던 장소를 비교하여 추천하는 사용자 행동 기반 다속성 태도 모델 기반의 장소 추천 모델을 연구한다. 다속성 태도점수를 산출하기 위해 피쉬바인(Fishbein) 방정식을 활용하고 피어슨 상관계수를 이용하여 사용자들간의 유사한 장소를 추출했다. 그리고 그룹렌즈의 선호도 예측 알고리즘을 활용하여 추천 대상 장소를 선정하고 유클라디안 거리법으로 사용자의 거리기반 장소를 추천하였다. 또한 본 논문에서는 실제 데이터를 이용한 실험을 통해 본 논문에서 제시한 시스템의 우수성도 입증하였다.

다속성 태도 모델과 협업적 필터링 기반 장소 추천 연구 (A Study on Recommendation Systems based on User multi-attribute attitude models and Collaborative filtering Algorithm)

  • 안병익;정구임;최혜림
    • 스마트미디어저널
    • /
    • 제5권2호
    • /
    • pp.84-89
    • /
    • 2016
  • 스마트폰이나 태블릿 PC와 같이 GPS를 탑재한 모바일 기기 보급으로 위치 기반 정보는 모바일 생활의 필수 요소로 자리잡았다. 이제 사용자들은 더 나아가 개인별 성향에 따른 맞춤형 정보를 원하고 있다. 개인 맞춤형 추천을 위해서는 사용자의 행동을 이해하는 것이 필요한데 실생활에 많은 부분을 차지하고 있는 음식점 방문도 맞춤형 추천 서비스를 제공해 줄 수 있다. 본 논문에서는 음식점 방문에 대한 비슷한 태도를 보인 사용자를 추출한 후 방문했던 장소를 비교하여 추천하는 사용자 행동기반 다속성 태도 모델 기반의 장소 추천 모델을 연구한다. 다속성 태도점수를 산출하기 위해 피쉬바인(Fishbein) 방정식을 활용하고 피어슨 상관계수를 이용하여 사용자들이 방문했던 장소의 중 유사한 속성을 가진 장소를 추출했다. 그리고 그룹렌즈의 선호도 예측 알고리즘을 활용하여 추천 대상 장소를 선정하고 유클라디안 거리법으로 사용자에게 거리기반 장소를 추천하였다. 또한 실제 데이터를 이용한 실험을 통해 본 논문에서 제시한 시스템의 우수성도 입증하였다.

기계학습 분류기의 예측확률과 만장일치를 이용한 한국어 서답형 문항 자동채점 시스템 (Automated Scoring System for Korean Short-Answer Questions Using Predictability and Unanimity)

  • 천민아;김창현;김재훈;노은희;성경희;송미영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.527-534
    • /
    • 2016
  • 최근 정보화 사회에서는 단순 암기보다는 문제 해결 능력과 종합적인 사고력을 바탕으로 창의적인 생각을 할 수 있는 인재를 요구한다. 이에 따라 교육과정도 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점자의 주관에 의존하여 채점이 진행되기 때문에, 채점 결과의 일관성을 확보하기 어렵다는 단점이 있다. 이런 점을 해결하기 위해 해외에서는 기계학습을 이용한 자동채점 시스템을 채점 도구로 사용하고 있다. 한국어는 영어와 언어학적으로 다른 분류에 속하므로 영어권에서 사용하는 자동채점 시스템을 한국어에 그대로 적용할 수 없다. 따라서 한국어 체계에 맞는 자동채점 시스템의 개발이 필요하다. 본 논문에서는 기계학습 분류기의 예측확률과 만장일치 방법을 사용한 한국어 서답형 문항 자동채점 시스템을 소개하고, 자동채점 시스템을 이용한 채점 결과와 교과 전문가의 채점 결과를 비교하여 자동채점 시스템의 실용성을 검증한다. 본 논문의 실험을 위해 2014년 국가수준 학업성취도 평가의 국어, 사회, 과학 교과의 서답형 문항을 사용했다. 평가 척도로 피어슨 상관계수와 카파계수를 사용했다. 채점자가 개입했을 때와 개입하지 않았을 때의 상관계수 모두 0.7 이상으로 강한 양의 상관관계를 보였다. 이는 자동채점 시스템이 교과 전문가가 채점한 결과와 유사한 방향으로 답안에 점수를 부여한 것이므로 자동채점 시스템을 채점 보조도구로서 충분히 사용할 수 있을 것이다.

협동적 필터링을 이용한 K-최근접 이웃 수강 과목 추천 시스템 (K-Nearest Neighbor Course Recommender System using Collaborative Filtering)

  • 손기락;김소현
    • 정보교육학회논문지
    • /
    • 제11권3호
    • /
    • pp.281-288
    • /
    • 2007
  • 협동적 필터링은 사용자가 좋아할 만한 항목을 예측하기 위하여 비슷한 선호도를 가지는 다른 사람들의 평가 항목에 근거하여 추천하는 방법이다. 이러한 협동적 필터링 기법은 오늘날과 같이 대규모의 정보가 효과적으로 축적되고 이용 가능하게 된 정보화된 사회에서는 현명한 의사결정을 하도록 도와주는 역할을 한다. 본 논문에서는 대학생들이 수강과목의 취사선택을 용이하게 할 수 있도록 수강과목 추천 시스템을 설계하고 구현하였으며 실험적으로 평가하였다. 먼저, 학생들은 과거 자신이 수강하였던 과목에 대한 과목 선호도를 데이터베이스에 입력한다. 과목 선호도의 패턴이 유사한 학생들은 유사 그룹으로 간주된다. 성향이 유사한 사용자를 찾기 위해 일반적으로 사용되고 있는 피어슨 상관계수에 의한 유사도를 이용하였다. 수강 과목을 예측하려는 학생과 가장 유사한 패턴을 보이는 K 명의 학생들의 수강 과목에서 가장 높은 선호도를 보이는 과목들의 순서화된 리스트를 추천 과목으로 제시한다. 설문 조사를 통한 실험 데이터를 이용하였으며 평균 절대 에러를 사용하여 제안한 방법의 정확도를 평가하였다.

  • PDF

트위터를 활용한 감성 기반의 영화 유사도 측정 (Measuring Similarity Between Movies Based on Sentiment of Tweets)

  • 김경민;김동윤;이지형
    • 한국지능시스템학회논문지
    • /
    • 제24권3호
    • /
    • pp.292-297
    • /
    • 2014
  • 최근 소셜 네트워크 서비스가 보편화되면서, 이를 활용하여 사람들의 의견이나 감성 등을 파악하기 위한 감성분석 연구가 다양한 분야 진행되고 있다. 기존의 영화 관련 연구의 경우, 대부분이 영화평에 대해 단순 긍/부정으로 감성분석을 하여, 영화에 대한 선호도를 파악하는 데 그쳤다. 사람의 감성은 단순 긍/부정이 아닌 다양한 감성으로 분류될 수 있는데 반해, 이분법적 감성분석은 영화의 평점 정보에서 손쉽게 얻을 수 있는 선호도와 유사한 분석을 하는데 그친다. 따라서 영화의 평점보다 다양하고 유용한 정보를 얻기 위해서는, 영화 리뷰를 세분화된 감성으로 분석하여 영화에 대해 느낀 감성을 다양한 기준으로 분류할 필요가 있다. 본 논문에서는 Thayer 모델을 기반으로 감성 분류 기준을 세우고, 수집한 영화 관련 트윗을 이용하여 각 영화에 대해 대중이 느끼는 감성을 분석한다. 분석된 영화에 대한 감성 비율을 유클리드거리, 코사인유사도, 피어슨 상관계수를 이용하여 영화간의 유사도를 측정하였다. IMDB에서 제공하는 유사 영화 정보를 바탕으로 본 논문에서 제안하는 방식의 유용성을 검증하였다.

신경망 기반의 유전자조합을 이용한 마이크로어레이 데이터 분류 시스템 (The System Of Microarray Data Classification Using Significant Gene Combination Method based on Neural Network.)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1243-1248
    • /
    • 2008
  • 최근 생명 정보학 기술의 발달로 마이크로 단위의 실험조작이 가능해짐에 따라 하나의 chip상에서 전체 genome의 expression pattern을 관찰할 수 있게 되었고, 동시에 수 만개의 유전자들 간치 상호작용도 연구 가능하게 되었다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용해 데이터의 정규화를 거쳐 본 논문에서 제안한 유사성 척도 조합 방법으로 정보력 있는 유전자들을 추출한 후, 유사성 척도 조합 방법과 결합한 멀티퍼셉트론 신경망 분류기와 기존의 DT, NB, SVM 분류기를 이용하여 클래스 분류 시스템을 구축하고, 성능을 비교분석하였다. 피어슨 적률 상관 계수와 유클리디안 거리 계수 조합을 이용하여 선택된 200 유전사들을 멀티퍼셉트론 신경망 분류기로 분류한 결과 98.84%의 정확도를 보여 다른 분류기를 이용하여 실험을 수행한 경우보다 향상된 분류 성능을 보였다.

표준화 기반 유의한 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 설계 (The Design Of Microarray Classification System Using Combination Of Significant Gene Selection Method Based On Normalization.)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2259-2264
    • /
    • 2008
  • 정보력 있는 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단 간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 정보적 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 제안한 유사성 척도 조합 방법으로 정보력 있는 유전자들을 추출할 수 있는 시스템을 고안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 피어슨 적률 상관 계수와 유클리디안 거리 계수 조합을 이용하여 선택된 200 유전자들을 멀티퍼셉트론 신경망 분류기로 분류한 결과 93.84%의 향상된 분류 성능을 보였다.

지능형 통증 간호중재 유헬스 시스템 성능분석 (Performance Analysis of Intelligence Pain Nursing Intervention U-health System)

  • 정호일;류현;정경용;이영호
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2013
  • 개인화 추천 시스템은 자동화된 정보 필터링 기술을 적용하여 사용자의 취향에 맞는 상품을 추천해 주는 시스템이다. 이러한 기술 중 협력적 필터링은 비슷한 패턴을 가진 형태들을 식별해 내는 기법이다. 따라서 이를 이용하면 과거 유사한 형태를 가진 환자의 자료를 통하여 통증 강도를 유추 하거나 분류된 환자의 프로필의 유사도에 따라 관련 사정을 추출하는 것이 가능하게 된다. 유사도 가중치 추출의 대표적인 방법인 피어슨 상관계수를 사용하는 방법은 데이터의 양에 따라 표본 데이터가 적은 경우 예측 값이 부정확해지고 양이 방대한 경우 계산량이 제곱으로 늘어 신속한 결과를 추출할 수 없게 되는 단점이 있다. 본 논문에서는 MAE와 순위 스코어를 사용하여 의미있는 데이터를 추출하기 위한 표본 자료의 규모와 유사도 군집량을 비교하여 구현된 지능형 통증 간호중재 유헬스 시스템의 우수성을 확인하였다. 이를 통하여 통증환자의 고통호소를 간호사가 신속하게 파악할 수 있도록 기초자료와 가이드라인을 제공하게 되고, 따라서 환자의 안위 증진이 향상되게 된다.

선호도 재계산을 위한 연관 사용자 군집 분석과 Representative Attribute -Neighborhood를 이용한 협력적 필터링 시스템의 성능향상 (Performance Improvement of Collaborative Filtering System Using Associative User′s Clustering Analysis for the Recalculation of Preference and Representative Attribute-Neighborhood)

  • 정경용;김진수;김태용;이정현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.287-296
    • /
    • 2003
  • 추천 시스템에 있어서 협력적 필터링 기술은 많은 연구가 되고 있다. 그러나 협력적 필터링 기술을 이용한 추천 시스템은 초기 평가 문제와 희박성 문제가 발생한다. 이를 해결하기 위해서 본 논문에서는 선호도 재 계산을 위한 연관 사용자 군집과 베이지안 추정치를 이용한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서 아이템의 속성을 고려하지 않는 단점을 보완하기 위해서 선호도에 가장 크게 영향을 미치는 대표 장르를 추출하여 유사한 이웃을 찾아 낼 때 예측에 이용하는 Representative Attribute-Neighborhood 방법을 사용한다. 협력적 필터링의 알고리즘에 군집 아이템 백터 내의 특정 아이템의 선호도를 재계산 하기 위한 연관 사용자 군집 분석을 적용하여 성능 향상을 하였다. 또 초기 평가 문제와 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집한다. 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게하여 예측의 정확도를 높일 수 있다. 제안된 방법은 기존의 방법보다 높은 성능을 나타냄을 보인다.