• Title/Summary/Keyword: 피브릴

Search Result 67, Processing Time 0.022 seconds

Degradation of Natural Dyed Silk Fabrics under Ultraviolet Light(UV) -Focused on Gardenia and Sappanwood- (자외선에 의한 천연 염색 견직물의 취화 연구 -치자, 소목 염색을 중심으로-)

  • Shin, Youn-Sook;Choi, Seung-Youn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.5 s.164
    • /
    • pp.659-669
    • /
    • 2007
  • The purpose of this study was to investigate the degradation of silk fabrics dyed with gardenia and sappanwood by Ultraviolet Light(UV). To asses the effect of uv on dyed silk fabrics, physical and chemical properties of samples were explored. K/S value rapidly decreased with increasing exposure time. Mordanting improved ultraviolet-cut ability and the sappanwood dyed samples were superior to those of gardenia dyed in ultraviolet-cut ability. Color progressively faded away as uv exposure time increased, accordingly, $L^*,\;a^*,\;b^*$, H/VC, ${\Delta}E$ were changed. Morphological change observed with SEM represented degradation of silk fabrics from the outer fibril to the inner fibril. Tensile Strength abruptly decreased as uv exposure time increased and the mordanted samples showed higher tensile strength than the unmordanted. FT-IR analysis confirmed that main peaks at 3297 and $1704cm^{-1}$ band for silk fabric were due to N-H and C=O stretching, gardenia peaks at 1654 and $668cm^{-1}$ band representing C=O(ester), C=C(alken) and O-C=O(carboxylic acids) of crocin and sappanwood peaks at $1715cm^{-1}$ band representing C=O(cyclic keton) of brazilin appeared on the samples exposed for 14 days, but these peaks indicating colorants after 28 days of uv exposure faded away due to prolonged exposure of uv.

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea (Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성)

  • Kim, Eun-Ji;Kwon, Gu-Joong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2013
  • The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.

The Fragments of Fibronectin (Fn-fr's 70, 45 kDa) Increase MMP-1 Expression and MMP-2 Activity in Normal Human Fibroblasts (사람 피부 섬유아세포에서의 파이브로넥틴 조각(70, 45 kDa)에 의한 MMP-1 발현 증가와 MMP-2 활성 증가 연구)

  • Hwang, Jae-Sung;Kim, Hyae-Kyoung;Son, Eui-Dong;Lee, Jin-Young;Kang, Hak-Hee;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-249
    • /
    • 2007
  • The alternation of extracellular matrix (ECM) protein in aging process is associated with symptoms such as wrinkling and loss of elasticity in skin. Now, the major target proteins for anti-aging have been metalloproteases and the structural proteins such as collagen and elastin. Recently, the interaction of cell and ECM proteins (collagen, fibrillin, and fibronectin) is reported to have an important role in survival, proliferation and tissue reconstruction. Fibronectin is a matrix adhesion protein which binds to collagen and integrin and degraded by serine proteases. It has been reported that fragments of fibronectin (Fn-fr's) were involved in matrix metalloproteases (MMPs) expression in osteoblast. But, the role of Fn-fr's in human skin and in skin cells has not been reported yet. Therefore, we investigated the differences of fibronectin fragmentation pattern between young and aged human skin, and demonstrated that the fragmentation of fibronectins is significantly increased in aged human skin. Also, treatment of Fn-fr's (70, 45 kDa) increased MMP-1 expression and MMP-2 activity in human dermal fibroblasts. Our results suggest that Fn-fr's as a potential new factor to accelerate skin aging.

Effect of Nanocellulose and Aminated Starch on Tensile and Thermal Properties of Plasticized Starch Film (가소화 전분필름의 강도 및 열적 성질에 미치는 나노셀룰로오스 및 아민화전분의 첨가영향)

  • Kim, Bo-Yeon;Han, Song-Yi;Lee, Sung-Yong;Kim, Young-Kyoon;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.376-384
    • /
    • 2014
  • This study investigated the effect of nanocellulose, such as microfibrillated cellulose (MFC) and cellulose nanocrystal (CNC), and aminated starch on tensile property and thermal stability of plasticized starch film. Glycerol (23 wt%) was used as a plasticizer and nanocelluloses of 1-30 parts per hundred parts of resin (phr) in the basis of plasticized starch were added. Tensile strength and elastic modulus increased with increasing nanocellulose addition amount, whereas elongation at break decreased. Tensile properties of MFC-reinforced starch film were higher than those of CNC-reinforced film. Optimum addition amount of aminated starch, which is commonly used for paper sizing, to improve tensile property of film, was found to be 5%. And 1% addition of aminated starch showed the best effect in the improvement of tensile property of the film. Thermal stability was improved with the addition of MFC to plasticized starch film with and without aminated starch.

Studies on Pulping of Sponge Gourd Net Fiber - Analysis of Morphology and Characteristics of Pulps - (수세미외 섬유의 펄프화에 관한 연구-섬유의 구조와 펄프화별 특징 분석-)

  • Kim, Jong-Gyu;Rho, Jae-Seong;Lee, Jong-Shin
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1014-1021
    • /
    • 1997
  • Studies were carried out on the preparation of several kinds of pulps from Sponge gourd fiber by KP, ASP, SP PAP, AP and addition of AQ pulping process. These unbeaten and beaten pulping fibers were observed their characteristics and fiber structure by SEM, FQA, Image analyzer and Micro projector. The results were summarized as follows; 1) The cooking condition which is the possible defibrilation of Shives are KP base($160^{\circ}C$, 2hr.), ASP base($155^{\circ}C$, 4hr.), PAP base($160^{\circ}C$, 1hr.). From the results, the kappa no. had the range of 12, 25, 10 each other. 2) The pulp yields of sponge gourd fiber obtained the range of KP 50~55%, ASP&60~70% and PAP 45~50%. SP base have the highest and contnets of KP&PAP base are much the same as woods. 3) Increasing amount of NaOH on Pulping was accelerated the defibrilation of Shives and was changed a morphology of pulping fiber quality such as fiber length, curl and kink index. 4) Addition of AQ on pulping process of sponge gourd fiber had a affect to raise the rate of delignification while protecting cellullosic components against degradation, especially defibrilation was very excellent, beated pulp much more easily and increased the fibrilation. 5) ASP system have higher bulk density, fiber bonding and protecting cellullosic components against degradation than KP or PAP. 6) The color reactions of the "C" stain solution showed blue or blue-gray with clean and transparency thin cell wall.

  • PDF

The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts (피부 섬유아세포에서 다이드제인의 파이토에스트로겐 효과)

  • Kim, Mi-Sun;Hong, Chan Young;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • Estrogen deficiency results in a reduction of skin quality and function in postmenopausal women. Over the past decade, many studies have supported that estrogen provides anti-aging effects as a result of the ability of estrogen to prevent skin collagen decline, restore skin elasticity, and increase skin hydration in postmenopausal women skin. Due to their structural similarity with estrogen, isoflavones have been called phytoestrogens. Photoprotective effects of isoflavones are well established while their estrogenic-like activities are not fully understood in human skin. In this study, we investigated whether daidzein, an effective isoflavone, has phytoestrogenic activity and induces transcriptional change of extracellular matrix components in dermal fibroblasts. We examined the luciferase activity of daidzein and ${\beta}$-estradiol using transiently transfected NIH3T3-ERE cells. The estrogenic receptor-dependent transcriptional activity was increased in a dose-dependent manner when treated with daidzein, with a maximum of 2.5-fold induction at $10{\mu}g/mL$ of daidzein compared with non-treated control. In addition, daidzein significantly in creased the expressions of collagen type I, collagen type IV, elastin, and fibrillin-1 in human dermal fibroblasts. By comparing with the effects of ${\beta}$-estradiol through out all the experiments, we confirmed that daidzein had estrogenic activity and function in fibroblasts. These results suggest that daidzein-based application, having both photoprotective and phytoestrogenic effects, may be a powerful approach for skin anti-aging of postmenopausal women.

Physicochemical Characteristics of Silk Fibroin Degummed by Protease in Bacillus licheniformis II. Behavior in Aqueous Solution of Silk fibroin (Bacillus licheniformis 단백질 분해 효소에 의한 정련 견사의 특성 III. 견 피브로인 수용액의 거동)

  • 김영대;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.60-68
    • /
    • 1993
  • It has been known that the silk degumming treated by hot alkali solution is easy to handle but is liable to yield poor-quality silk due to the degree of degumming loss, incomplete-degumming or over-degumming. Therefore, many studies have been carried out on the silk degumming by enzyme in order to improve the quality of silk. However, no attention has been paid to the physicochemical analysis of enzymatic degummed silk. In this paper, two different degumming methods, soap and enzymatic, are compared in aqueous solution state of silk fibroin. The results can be summarized as follows: There was no significant difference between two solutions on the bases of polarizing microscopy, TEM observation and SDS-PAGE. Spherulite of silk fibroin was not observed in polarizing microscopy, however the leaf-shape fibril structure was developed upon solidification. The size of spherulites of silk fibroin in TEM observation were 30~120nm with a wide range of size distribution. The intrinsic viscosity of enzymatic degummed fibroin solution was lower than that of soap degummed solution. This can be explained that the silk fibroin was more degraded by enzymatic degumming method compared with the soap degumming method. SDS-polyacrylamide gel electrophoresis showed that the fibroin molecule was composed of large component of molecule weight above 50 kd and small component of molecule weight about 20 kd. There was no difference in crystallinity between two degumming methods on the bases of results of DSC thermograms and IR spectra.

  • PDF