• Title/Summary/Keyword: 피부세포

Search Result 1,272, Processing Time 0.028 seconds

Effects of Electrical Stimulation on the Mast Cell of Skin in Rats (전기자극이 흰쥐의 피부 비만세포에 미치는 영향)

  • Lee Jae-Hyoung;Jekal Seung-Joo;Park Seung-Teack
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.81-87
    • /
    • 1999
  • The purpose of this study was to determine the effect of electrical stimulation on the number of MCs and percent of degranulated MCs in rat skin. Twelve male Sprague-Dawley rats were divided into two group; electrical stimulation group (n=6) and control group (n=6). Each animals hair on the back was removed. The electrical stimulation group received an positive rectangular pulsed electrical stimulation, while the control group was given the same treatment without electricity. The biopsy specimens were fixed in formalin, embedded in paraffin and stained with toluidine blue-nuclear fast red and alcian blue-safranin O. respectively. The MCs were counted using a light microscope and computerized image analysis system and calculated as the density and the percent. A t-test showed a significantly higher density of MCs in the electrical stimulated rats than control rats(p<0.05), and the percent of degranulated MCs in the electrical stimulated rats was higher than in the control rats (p<0.05) in toluidine blue stained sections. The density of MCs was significantly higher in the electrical stimulated rats than the control rats in alcian blue-safranin O Stained sections (P<0.01). An analysis of variance showed that the densities of CTMCs was significantly lower than the densities of MMCs and mixed MCs in electrical stimulated rat in alcian blue-safranin O Stained sections (p<0.05). These results suggest that the electrical stimulation may have potential for increasing the number of MCs and lead to degranulate the MCs in rat skin.

  • PDF

Change of Skin Mucus Cells Related to Aerial Exposure of Misgurnus mizolepis (Cobitidae) Dwelling in a Rice Field (논에 서식하는 미꾸라지, Misgurnus mizolepis의 공기노출에 의한 피부 점액세포의 변화)

  • Oh, Min-Ki;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • During the winter, the rice field-dwelling muddy loach Misgurnus mizolepis is buried in burrows constructed of mud and are subjected to exposure to air at times of shortage of water. To investigate the environmental factors that lead to changes of the skin mucus cells of the muddy loach in rice fields, we carried out an experiment where we artificially exposure the fish to air, duplicating as close as possible winter conditions in nature. During the summer, a water tank containing M. mizolepis was filled with mud, and the water was allowed to evaporate. After a month of evaporation, the loach constructed burrows similar to those in a winter rice field. The epidermis in the experimental fish was mostly occupied by large elongated mucus cells, whose numbers drastically increased in all observed regions of the dorsum, lateral region, and the occiput. Such features are typically seen in fishes in wild habitats during the winter season.

Seasonal Change of the Skin Morphology of Muddy Loach, Misgurnus anguillicaudatus(Cobitidae) from Korea (계절변화에 따른 한국산 미꾸리, Misgurnus anguillicaudatus 피부의 조직학적 연구)

  • Oh, Min-Gi;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.20 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • The histological morphology on the skin of Misgurnus anguillicaudatus was described in the three regions such as dorsal, lateral, occiput and subsequently morphological variations of the skin were monthly observed for a year. The skin consisted of epidermis having epithelial cell, club cell and mucus cell, and dermis of mainly connective tissue fiber, embedded scale and blood capillary. Unicellular mucus cells situated at the epidermis underwent seasonal change in its size, as well as number and amounts of mucus-secreting materials, which they greatly increased in winter, but did not in summer. As it is getting cold, the mucus cells' shape changed from initial spherical to oval or elongated form. Such considerable changes in the mucus cell were particularly most evident in the occiput during winter. Moreover, the dermis largely thickened about 2~3 times in winter than in summer. Based on these results, we discussed function for the mucus on what it mainly acts in nature and information on whether mucus cells' seasonal variations affect on hibernation and cutaneous respiration.

The Protective Effect of Spirulina-derived Phycocyanin on Dermal Fibroblasts Induced by UV Rays (자외선으로 손상을 유도한 피부섬유아세포에서 스피룰리나 유래 피코시아닌의 보호 효과)

  • Yang, Jae Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1249-1254
    • /
    • 2021
  • UV induce oxidative stress and increase matrix metalloproteinase (MMP) expression, resulting in skin aging. Thus, preventing skin damage from ultraviolet B (UVB)-induced skin damage can attenuate skin aging. Spirulina is comprised of prokaryotes a powerful antioxidant. This study aimed to investigate the photoprotective effects of spirulina-derived phycocyanin (PC) against UVB radiation using human skin fibroblast. As a results, PC showed no toxicity at concentrations of 5-40 ㎍/mL in terms of fibroblast viability. Survival rate of UVB-irradiated fibroblast incresased to 73.5% from 50.5% with PC treatment. UVB treatment increased MMP-1 and MMP-9 expression whereas PC treatment decreased it. The results indicate that PC might reduce or prevent skin aging by reducing UVB irradiation-induced skin wrinkles and free radicals.

Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria (유산균 유래 엑소좀 유사 나노베지클의 피부 장벽 개선 효과)

  • Wang, Hyesoo;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.171-178
    • /
    • 2021
  • In this study, exosomal-like nano-vesicles derived from probiotics were isolated and various physiological activities were evaluated on the skin. This study show that Lactococcus lactis subsp. lactis (LL) are incubated, and then isolated LL derived exosomal nanovesicles (LVs) at the range of 70 ~ 200 nm by high-pressure homogenizer and ultrafiltration. The vesicle numbers were an average of 1.81 × 1011 particles/mL. This study finds out the bacterial nanovesicles' beneficial effect on the skin. Fibrillin (FBN1) gene expression increased by 23% in fibroblast cells. Fibronectin (FN1) and filaggrin (FLG) gene expression increased by 65% and 400% in keratinocytes. We could see that cornified envelope (CE) formation ability was increased by 30% compared to the control group. Furthermore, collagen type I alpha 1 (COL1A1) protein expression increased by 83% compared to the UV-irradiated control group. These results suggest that LVs could help skin barrier improvement and used as an ingredient for cosmetics or pharmaceuticals.

Inhibitory effect of Aralia elata ethanol extract against skin damage in UVB-exposed human keratinocytes and human dermal fibroblasts (두릅순 에탄올 추출물의 인간유래 피부각질형성세포와 피부섬유아세포에서의 자외선에 의한 광노화 억제효과)

  • Yang, Jiwon;Kwak, Chungshil
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.429-436
    • /
    • 2016
  • Purpose: Solar ultraviolet (UV) radiation causes inflammation and matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging such as wrinkle formation, dryness, and sagging. Activation of MMP is influenced by various molecules such as reactive oxygen species (ROS), proinflammatory cytokines, and transient receptor potential vanilloid type (TRPV)-1, which are increased in UV-irradiated skin cells. Aralia elata (AE) ethanolic extract was reported to inhibit ROS generation caused by UVB-irradiation in keratinocytes. In this study, we investigated the photoprotective effect of AE ethanolic extract on UVB-irradiated human keratinocytes (HaCaT) and human dermal fibroblasts (HDF). Methods: AE was freeze-dried, extracted in 70% ethanol, and concentrated. Skin cells were treated with AE extract for 24 h and then exposed to UVB ($55mJ/cm^2$). After 48 h of incubation, proinflammatory cytokines, MMP-1, type-1 procollagen, and TRPV-1 levels were measured by ELISA or Western blotting. Results: Treatment with AE extract ($100{\mu}g/mL$) significantly inhibited UVB-induced IL-6, IL-8, and $PGE_2$ production in HaCaT by 25.6%, 5.3%, and 70.2%, respectively, and also inhibited elevation of MMP-1 and TRPV-1 caused by UVB irradiation by 20.0% and 41.9%, respectively (p < 0.05). In HDF, AE extract treatment significantly inhibited both elevation of MMP-1 and reduction of type-1 procollagen caused by UVB irradiation (p < 0.05). In addition, type-1 procollagen was elevated by AE extract treatment in normal HDFs (p < 0.05). Conclusion: AE 70% ethanol extract has photoprotective ability via reduction of proinflammatory mediators, TRPV-1 and MMP-1 production, and elevation of collagen synthesis. Our findings suggest that AE extract might be a good natural material to protect against UVB-induced premature skin aging.

Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin (감마선조사에 의한 돼지 피부장애에 cyclooxygenase-2의 발현변화)

  • Kim, Joong Sun;Park, Sunhoo;Jang, Won Seok;Lee, Sun Joo;Lee, Seung Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • The basic concepts of radiation-induced skin damage have been established, the biological mechanism has not been studied. In this study, we have examined the effects of gamma rays on skin injury and cyclooxygenase(COX)-2 expression. Gamma irradiation induced clinicopathological changes in a dose- and time-dependent manner in mini-pig skin. The histological changes were consistent with the changes in gross appearance at 12 weeks after irradiation. After three days' irradiation, apoptotic cells in the basal layer were found more frequently in irradiated skin than in normal skin, with the magnitude of the effect being dose-dependent. The thickness of the epidermis transiently increased 3 days after irradiation, and then gradually decreased, although changes in the epithelial thickness of the irradiated field were not observed with irradiation doses over 50 Gy. In the epithelium, there was an initial degenerative phase, during which the rate of basal cell depletion was dependent on the radiation dose (20-70 Gy). One week after irradiation, COX-2 expression was mostly limited to the basal cell layer and was scattered across these cells. High COX-2 expression was detected throughout the full depth of the skin after irradiation. The COX-2 protein is upregulated after irradiation in mini-pig skin. These histological changes associated with radiation exposure dose cause the increased COX-2 expression in a dose-dependent fashion.

Effects of Molecular Weights of Sodium Hyaluronate on the Collagen Synthesis, Anti-inflammation and Transdermal Absorption (히알루론산나트륨의 분자량 크기에 따른 Collagen 합성, 항염증 및 피부 흡수에 미치는 영향)

  • Shin, Eun Ji;Park, Joo Woong;Choi, Ji Won;Seo, Jeong Yeon;Park, Yong Il
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.235-245
    • /
    • 2016
  • In this study, we examined the effects of various molecular weights (1, 10, 50, 100, 660, and 1500 kDa) of sodium hyaluronate (HA), which were prepared by enzyme hydrolysis, on the collagen synthesis, anti-inflammation and skin absorption. These HA did not significantly affect the viability of human dermal fibroblast Hs68 cells. Among them, 1500 kDa, 50 kDa HA most significantly increased collagen production by 59%, and 50% in the Hs 68 cells, respectively. Whereas 1500 and 660 kDa HA hardly pass through mouse transdermis membrane, lower molecular weights (1, 10, or 50 kDa) of HA showed time-dependent increase in skin permeation. HA of 50 kDa showed highest anti-inflammatory effects by reducing nitric oxide and tumor necrosis factor-${alpha}$ production in the RAW 264.7 cells, comparing to other HA (1, 10, and 100 kDa HA). Recently, there is no report about anti-wrinkle and anti-inflammatory effects and skin permeation of different molecular weights HA (1, 10, 50, 100, 660 and 1500 kDa), which were produced by enzyme hydrolysis. These results suggested that 50 kDa HA can be potent candidates for the development of effective anti-aging and anti-wrinkle cosmetic agents. The results of this study demonstrated that among those HA with different molecular weights, 50 kDa HA showed highest anti-inflammatory activity, significant capability to induce collagen synthesis and high level of skin permeation.

Anti-aging Effects of Marine Natural Extracts against UVB-induced Damages in Human Skin Cells (UVB로 손상이 유도된 피부세포에 해양소재 추출물의 항노화 효능)

  • Lee, Chan;Jang, Jung-Hee;Kim, Bo-Ae;Park, Chan-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.255-261
    • /
    • 2012
  • The skin is continuously exposed to environmental stresses. One of the most important stress factor is UV radiation. UV radiation causes a variety of biological effects on the skin, including inflammation, pigmentation, photoaging and cancer. Therefore in this study, we tried to search for skin-protective antioxidant materials from marine natural products (Porphyra Thalli, Laminariae japonicae thallus, Ostreae Concha, Sargassum Thallus, Undaria thallus, Haliotidis Concha, Agar, Codium thalli, Hizikia fusiforme thalli; HFE, Thalli) which exhibit protective activities against UVB-induced cytotoxicity and oxidative cell death and antiaging effects. As a results, UVB-induced cytotoxicity and cell death were effectively suppressed by treatment of Sargassum Thallus, Agar, Haliotidis Concha, Codium thalli, Thalli ethanol extracts. UVB-induced cell death was mediated by intracellular accumulation or ROS, which was significantly inhibited by treatment with marine natural products extracts. Also, The protective effect of these marine natural products seemed to be mediated by increased expression of type I collagen and Type I procollagen. These results suggest that marine natural products may have anti-aging effects new functional materials against oxidative stress-mediated skin damages.

Effect of Natural Products on Skin Cells -Action and Suppression of Reactive Oxygen Species- (천연물의 피부세포에 미치는 영향 - 활성산소의 작용과 억제 -)

  • 박수남
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.77-127
    • /
    • 1999
  • 활성 산소종은 노화, 특히 피부노화의 원인 물질로 작용하고 있다. 피부는 자외선에 노출되어 있어 활성 산소종을 만드는 광화학적 반응들이 계속해서 일어나고 있다. 이들 활성 산소종들은 피부 세포 및 조직 손상을 주도한다. 이들은 항산화 효소와 비효소적 항산화제들로 구성된 항산화 방어망을 파괴함으로써 산화제/항산화제 균형을 산화 상태 쪽으로 기울게 한다. 결과적으로 계속된 산화적 스트레스는 지질 과산화, 단백질 산화, 간질 성분을 파괴시키는 단백질분해효소의 활성화, 탄력 섬유인 콜라겐과 엘라스틴의 사슬절단 및 비정상적인 교차결합, 히아루론산 사슬의 절단, 멜라닌 생성반웅 촉진, DNA 산화와 같은 생체 구성 성분들의 손상을 야기시킨다. 결국에는 탄력감수 주름살 및 기미.주근깨 둥으로 특징 지워지는 피부노화가 가속화된다. 따라서 피부노화 방지를 위해서는, 과잉의 활성 산소종 생성을 억제하고 또한 생성된 활성산소를 효율적으로 제거할 수 있는 시스템이 화장품의 처방에 반드시 포함될 필요가 있다. 즉, 산화제/항산화제 밸런스가 유지되는 피부의 항산화 방어 시스템 구축이 필요하다. 피부노화 방지에 있어서 천연물의 역할로 (1) 자외선 흡수제로서의 역할, (2) 항산화제로서의 역할, (3) 주름 개선제로서의 역할, (4) 미백제로서의 역할, (5) 항균\ulcorner항염작용 및면역 조절제로서의 역할에 대하여 살펴 보았다. 21세기는 본격적으로 기능성 화장품 시대가 개막될 것으로 예측하고 있다. 이에 맞춰 천연물들은 피부노화를 방지하는데 주도적인 역할을 할 것으로 기대된다.

  • PDF