In this paper, we propose an adaptive face region extraction algorithm based on skin color information. It consists oi the extraction of face candidate region and projection step. In the step of face candidate region extraction, we extract the pixels which are regarded as the candidate skin color pixels by using the given range. Then, the ratio between the total pixels and the extracted pixels is calculated. According to the ratio, we adaptively decide the range of the skin color and extract face candidate region. In the projection step, we project the extracted face candidate region into vertical direction to estimate the width of the face. Then the redundant parts are efficiently removed by using the estimated face width. And the extracted face width information is used at the horizontal projection step to extract the height of the face. From the experiment results for the various images, the proposed algorithm shows more accurate results than the conventional algorithm.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.6
/
pp.38-43
/
2008
Skin color information is an important feature for face region detection in color images. This can detect face region using statistical skin color model who is created from skin color information. However, due to the including of different race of people's skin color points, this general statistical model is not accurate enough to detect each specific image as we expected. This paper proposes method to detect correctly face region in various color image that other complexion part is included. In this method set face candidate region applying complexion Gausian distribution based on YCbCr skin color model and applied mathematical morphology to remove noise part and part except face region in color image. And achieved correct face region detection because using Haar-like feature. This approach is capable to distinguish face region from extremely similar skin colors, such as neck skin color or am skin color. Experimental results show that our method can effectively improve face detection results.
Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
Journal of the Korea Convergence Society
/
v.10
no.5
/
pp.1-8
/
2019
In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.
In this paper, we propose a real-time face detection and recognition system by using skin color informations, geometrical feature vectors of face, and facial angle informations from color face image. The proposed algorithm improved face region extraction efficiency by using skin color informations on the HSI color coordinate and face edge information. And also, it improved face recognition efficiency by using geometrical feature vectors of face and facial angles from the extracted face region image. In the experiment, the proposed algorithm shows more improved recognition efficiency as well as face region extraction efficiency than conventional methods.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.121-123
/
2006
얼굴의 표정은 얼굴의 구성요소 같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스쳐 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성 방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, Euclidean Distance Transform (EDT)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.
Ye, Soo-Young;Jung, Ji-Moon;Wie, Eun-Young;Nam, Ki-Gon
Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.225-228
/
2005
본 논문에서는 사람의 피부색 정보와 얼굴의 형태학적 정보를 이용한 실시간 얼굴 검출 알고리즘을 제한한다. 피부색은 YCbCr 칼라 공간에서 특정한 영역에 정의 되고 이것을 이용하여 피부색 영역을 검출할 수 있다. 이 피부색 영역은 간단한 영상처리와 사전지식을 적용하여 얼굴후보영역으로 사용된다. 검출된 얼굴 후보 영역은 연속적인 임계값을 이용한 눈 검출을 통해 얼굴 검출을 수행하고, 마지막으로 눈 영역과 아닌 영역으로 훈련된 신경망을 이용하여 얼굴 검증을 하게 된다. 이때 얼굴 검출에 실패할 경우 임계값을 순차적으로 증가시키면서 재검출하는 피드백 시스템이 적용된다. 실험 결과는 실시간으로 연속영상에서 얼굴을 검출하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.446-448
/
2011
본 논문에서는 조명 보정과 지역적인 밝기 정보를 이용한 유해 영상에서의 피부색 검출 방법을 제안한다. 첫번째, 조명의 영향을 줄이기 위하여 입력 영상을 히스토그램 평활화하여 명암 값의 분포가 한쪽으로 치우치거나 균일하지 못한 영상의 명암 값 분포를 균일화 시켜 영상을 향상될 수 있도록 한다. 그 다음, 평활화 시킨 영상을 25 개의 블록으로 분할한 후, 각 블록에서의 밝기 값에 대한 통해 평균과 왜도를 구한다. 구해진 값들을 영상의 임계값으로 설정하여 이진화 시킨다. 그리고, 평활화시킨 영상의 RGB 값을 Lab 컬러 공간으로 변환한다. 변환된 컬러 공간내의 조명 성분 값인 L(Luminance)값을 추출하여 이를 역변환 한다. 역변환한 L 값은 비정규 조명을 갖는 유해 영상의 조명에 민감한 영향을 제거하기 위하여 평활화 영상에 합한다. 마지막으로, 밝기 임계값을 통해서 얻어진 이진영상내의 객체 영역과 RGB 피부색 임계값을 통한 조명 보정된 평활화 영상내의 피부색 영역의 공통된 영역을 결과값으로 추출한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.292-296
/
2004
본 논문에서는 컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘의 성능을 향상시키는 방법에 대하여 논의하였다. 색상정보를 이용한 얼굴 추출 알고리즘은 얼굴의 기울어진 정도나 크기 둥에 영향을 받지 않으므로, 형태정보를 이용한 얼굴 추출 알고리즘에 비해 비교우위를 가진다. 그러나 조명의 변화가 심하거나, 피부색과 유사한 배경이 포함되어 있을 경우 적절한 성능을 내기 어렵다. 이러한 문제점들을 해결하기 위해 본 연구에서는 넓은 피부색 영역을 추출하고, Pulse-Coupled Neural Network를 통해 공간적으로 근접한 피부색 동종영역을 분리해 내는 방법을 사용하였다. 그리고 피부색 영역에 해당하는 픽셀들이 다른 영역들에 비해 큰 값을 갖도록 하여, Pulse-Coupled Neural Network의 linking coefficient를 보다 쉽게 결정하도록 하였다.
Kim, Hye-Jin;Kwak, Keun-Chang;Kim, Do-Hyung;Bae, Kyung-Sook;Yoon, Ho-Sub;Chi, Su-Young
한국HCI학회:학술대회논문집
/
2006.02a
/
pp.148-153
/
2006
인간-컴퓨터 상호작용(HCI) 기술은 과거 컴퓨터란 어렵고 소수의 숙련자만이 다루는 것이라는 인식을 바꾸어 놓았다. HCI 는 컴퓨터 사용자인 인간에게 거부감 없이 수용되기 위해 인간과 컴퓨터가 조화를 이루는데 많은 성과를 거두어왔다. 컴퓨터 비전에 기반을 두고 인간과 컴퓨터의 상호작용을 위하여 사용자 의도 및 행위 인식 연구들이 많이 행해져 왔다. 특히 손을 이용한 제스처는 인간과 인간, 인간과 컴퓨터 그리고 최근에 각광받고 있는 인간과 로봇의 상호작용에 중요한 역할을 해오고 있다. 본 논문에서 제안하는 손 추출 및 추적 알고리즘은 비전에 기반한 호출자 인식과 손 추적 알고리즘을 병행한 자연스러운 손 추출 및 추적 알고리즘이다. 인간과 인간 사이의 상호간의 주의집중 방식인 호출 제스처를 인식하여 기반하여 사용자가 인간과 의사소통 하는 것과 마찬가지로 컴퓨터/로봇의 주의집중을 끌도록 하였다. 또한 호출 제스처에 의해서 추출된 손동작을 추적하는 알고리즘을 개발하였다. 호출 제스처는 카메라 앞에 존재할 때 컴퓨터/로봇의 사용자가 자신에게 주의를 끌 수 있는 자연스러운 행동이다. 호출 제스처 인식을 통해 복수의 사람이 존재하는 상황 하에서 또한 원거리에서도 사용자는 자신의 의사를 전달하고자 함을 컴퓨터/로봇에게 알릴 수 있다. 호출 제스처를 이용한 손 추출 방식은 자연스러운 손 추출을 할 수 있도록 한다. 현재까지 알려진 손 추출 방식은 피부색을 이용하고 일정 범위 안에 손이 존재한다는 가정하에 이루어져왔다. 이는 사용자가 제스처를 하기 위해서는 특정 자세로 고정되어 있어야 함을 의미한다. 그러나 호출 제스처를 통해 손을 추출하게 될 경우 서거나 앉거나 심지어 누워있는 상태 등 자연스러운 자세에서 손을 추출할 수 있게 되어 사용자의 불편함을 해소 할 수 있다. 손 추적 알고리즘은 자연스러운 상황에서 획득된 손의 위치 정보를 추적하도록 고안되었다. 제안한 알고리즘은 색깔정보와 모션 정보를 융합하여 손의 위치를 검출한다. 손의 피부색 정보는 신경망으로 다양한 피부색 그룹과 피부색이 아닌 그룹을 학습시켜 얻었다. 손의 모션 정보는 연속 영상에서 프레임간에 일정 수준 이상의 차이를 보이는 영역을 추출하였다. 피부색정보와 모션정보로 융합된 영상에서 블랍 분석을 하고 이를 민쉬프트로 추적하여 손을 추적하였다. 제안된 손 추출 및 추적 방법은 컴퓨터/로봇의 사용자가 인간과 마주하듯 컴퓨터/로봇의 서비스를 받을 수 있도록 하는데 주목적을 두고 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.7
/
pp.1513-1517
/
2005
In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.