• Title/Summary/Keyword: 피부색 검출

Search Result 202, Processing Time 0.028 seconds

Hand Detection Using Motion Detection and Skin Detection (동작 검출과 피부색 검출을 이용한 손 검출)

  • Lee, Sang-Hyup;Son, Geum-Yeong;Kim, Sang-Min;Kim, Hyun-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.297-298
    • /
    • 2016
  • 본 논문에서는 손을 보다 효과적으로 인식하기 위해 동작 검출과 피부색 검출을 이용하여 인식하는 시스템을 제안한다. 단순히 피부색만을 이용하여 손을 인식하는 경우 피부색과 유사한 색상의 물체나 다른 신체 부위를 인식하는 문제점이 발생하게 된다. 이러한 문제점을 해결하기 위해 동작 검출을 이용하여 움직이는 물체만을 손이라고 가정하였다. 이렇게 가정을 하고 피부색 검출과 동작 검출을 이용하여 인식하는 경우 신체부위를 제외하고는 거의 검출되지 않는다. 그리고 인식된 영역마다 뼈대를 찾아 손을 검출한다. 조명이나 주변 환경에 최대한 영향을 적게 받기위해 시스템을 설계하였으며 단순 피부색 검출을 이용한 손 검출보다 좋은 성능을 발휘하며 손가락의 개수와 손 모양, 손 추적까지 응용할 수 있다.

  • PDF

Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races (강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델)

  • Park, Gyeong-Mi;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • The correct detection of skin color is an important preliminary process in fields of face detection and human motion analysis. It is generally performed by three steps: transforming the pixel color to a non-RGB color space, dropping the illuminance component of skin color, and classifying the pixels by the skin color distribution model. Skin detection depends on by various factors such as color space, presence of the illumination, skin modeling method. In this paper we propose a 3d skin color model that can segment pixels with several ethnic skin color from images with various illumination condition and complicated backgrounds. This proposed skin color model are formed with each components(Y, Cb, Cr) which transform pixel color to YCbCr color space. In order to segment the skin color of several ethnic groups together, we first create the skin color model of each ethnic group, and then merge the skin color model using its skin color probability. Further, proposed model makes several steps of skin color areas that can help to classify proper skin color areas using small training data.

Adaptive Skin Color Segmentation in a Single Image using Image Feedback (영상 피드백을 이용한 단일 영상에서의 적응적 피부색 검출)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.112-118
    • /
    • 2009
  • Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.

Face Detection based on Multi-Channel Skin-Color Model (다채널 피부색 모델에 기반한 얼굴 영역 검출)

  • 김영권;고재필;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.433-435
    • /
    • 2001
  • 얼굴 인식분야에서 실시간 얼굴검출에 대한 관심이 높아짐에 따라 피부색컬러 모델을 통한 얼굴영역검출에 대한 연구가 활발히 진행되고 있다. 그러나, 기존의 피부색 모델은 밝기 정보를 제거한 단일 채널의 색상모델이 대부분이다. 이에 본 논문에서는 얼굴피부색을 보다 효과적으로 모델링하기 위하여, 피부색 특성을 고려하여, 밝기 성분을 제거한 RGB 컬러를 모두 사용하는 H, Cb, Cg의 다채널 피부색 모델을 제시한다. 또한, 색상정보에서 사용하지 않은 밝기 정보는 영상 분할을 통해 사용한다. 제안하는 피부색 모델을 통한 얼굴영역 추출 과정을 보인다.

  • PDF

2-Stage Adaptive Skin Color Model for Effective Skin Color Segmentation in a Single Image (단일 영상에서 효과적인 피부색 검출을 위한 2단계 적응적 피부색 모델)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.193-196
    • /
    • 2009
  • Most of studies adopt a fixed skin color model to segment skin color region in a single image. The methods, however, result in low detection rates or high false positive error rates since the distribution of skin color is varies depending on the characteristics of input image. For the effective skin color segmentation, therefore, we need a adaptive skin color model which changes the model depending on the color distribution of input image. In this paper, we propose a novel adaptive skin color segmentation algorithm consisting of 2 stages which results in both high detection rate and low false positive error rate.

  • PDF

WFMM Neural Networks Based Skin Color Filter for Face Detection (얼굴패턴 검출 문제에서 WFMM 신경망 기반의 피부색 검출 기법)

  • Cho Il-Gook;Kim Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.299-302
    • /
    • 2006
  • 본 논문에서는 다중필터와 복합형 신경망으로 구성된 얼굴 검출 시스템과 WFMM 신경망을 이용한 피부색 검출기법을 소개한다. 전처리 단계에 해당하는 다중필터는 대상 영역의 수를 감소 시켜 시스템의 속도를 개선한다. 다중필터에 속한 색상필터는 총 11 가지의 색상 공간에서 피부색의 특징 값을 추출하여 학습 데이터로 사용하며, 이 학습 데이터에 의해 생성된 하이퍼 박스를 통해 피부색을 분류한다. 또한 WFMM 신경망의 연관도 요소 특성을 이용하여 각 색상 공간의 상대적 중요도를 분석하여 피부색 검출에 유용한 색상 공간을 분석하고 추출 한다. 얼굴패턴 검출을 위한 복합형 신경망은 첫 단계에서 가보 변환을 사용하는 CNN 을 통해 특징 지도를 생성하고, WFMM 신경망으로 최종 얼굴패턴을 검증한다.

  • PDF

Efficient Face Detection based on Skin Color Model (피부색 모델 기반의 효과적인 얼굴 검출 연구)

  • Baek, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.38-43
    • /
    • 2008
  • Skin color information is an important feature for face region detection in color images. This can detect face region using statistical skin color model who is created from skin color information. However, due to the including of different race of people's skin color points, this general statistical model is not accurate enough to detect each specific image as we expected. This paper proposes method to detect correctly face region in various color image that other complexion part is included. In this method set face candidate region applying complexion Gausian distribution based on YCbCr skin color model and applied mathematical morphology to remove noise part and part except face region in color image. And achieved correct face region detection because using Haar-like feature. This approach is capable to distinguish face region from extremely similar skin colors, such as neck skin color or am skin color. Experimental results show that our method can effectively improve face detection results.

Hybrid Color Model for Robust Detection of Skin Color under the Illumination Variance (조명 변화에 강건한 피부색 영역 검출을 위한 혼합 컬러 모델)

  • Moon, Kyu-Hyung;Choi, Yoo-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.98-101
    • /
    • 2006
  • 본 논문에서는 얼굴영상 인식의 전처리 단계인 피부 영역 자동 검출시 적용 가능하며 조명변화에 강건한 피부 영역 검출을 위한 혼합 컬러모델을 제시한다. 또한, 사용자별로 차이를 보이는 다양한 피부색을 자동으로 인식하고 사용자에 적합한 피부색 영역을 결정하기 위하여 제시한 컬러 모델을 기반으로 한 피부색 영역 모델링 전처리 단계를 제시한다. 우선, 사용자 및 사용 카메라에 따라 차이를 보이는 피부색에 대한 영역 모델을 구축하기 위하여 화면상의 가운데에 손이나 얼굴 영역이 위치하도록 하고 일정 프레임의 화면 정보를 취득한다. 취득 화면 정보로서 각 픽셀에 대한 정규화 된 RGB 성분 및 H 성분, V 성분 정보를 추출하고 이에 대한 평균화된 혼합 컬러 모델을 구축한다. H성분으로 피부색과 비슷한 배경을 제거하고 여기에 YUV 성분 중 적색에서 밝기 값을 뺀 성분인 V 값을 한 번 더 사용하여 밝기 값을 제거한 보다 뚜렷한 얼굴영역을 검출한다.

  • PDF

Skin Region Extraction Using Color Information and Skin-Color Model (컬러 정보와 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using color information and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non skin pixels, are eliminated from further processing. And we use the modified ST color space, where undesired effects are reduced and the skin color distribution fits better than others color space. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by $35{\sim}40%$ on average.

Skin Color Region Segmentation using classified 3D skin (계층화된 3차원 피부색 모델을 이용한 피부색 분할)

  • Park, Gyeong-Mi;Yoon, Ga-Rim;Kim, Young-Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1809-1818
    • /
    • 2010
  • In order to detect the skin color area from input images, many prior researches have divided an image into the pixels having a skin color and the other pixels. In a still image or videos, it is very difficult to exactly extract the skin pixels because lighting condition and makeup generate a various variations of skin color. In this thesis, we propose a method that improves its performance using hierarchical merging of 3D skin color model and context informations for the images having various difficulties. We first make 3D color histogram distributions using skin color pixels from many YCbCr color images and then divide the color space into 3 layers including skin color region(Skin), non-skin color region(Non-skin), skin color candidate region (Skinness). When we segment the skin color region from an image, skin color pixel and non-skin color pixels are determined to skin region and non-skin region respectively. If a pixel is belong to Skinness color region, the pixels are divided into skin region or non-skin region according to the context information of its neighbors. Our proposed method can help to efficiently segment the skin color regions from images having many distorted skin colors and similar skin colors.