• Title/Summary/Keyword: 피로 수명 평가

Search Result 504, Processing Time 0.028 seconds

Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove (완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가)

  • Shin, Jae-Myung;Han, Seung-Ho;Han, Dong-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

A Study for Basic Durability Assessment of Shale Shaker (셰일 셰이커 기초 내구성 평가에 관한 연구)

  • Oh, Jung-Soo;Kim, Sung-Min;Whang, Jong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.296-302
    • /
    • 2019
  • In this study, a basic durability assessment was performed by selecting the main part of a trial product of a shale shaker, which is one of components for a mud circular system. For a preliminary durability assessment, it was assumed that the lifetime of the bearing for the vibrator motor and the stiffness of the support spring are affected by the vibration when the motor operates continuously. In the case of the motor, the initial p-p level was 0.72 g, but after 100 hours of operation, the p-p level was rapidly increased to 1.26 g. Bearing defects could be estimated through ball defect frequency analysis. In the case of the spring, the stiffness of the spring was reduced by approximately 3.78% at the end of 2,000 hours of the fatigue-durability test by applying excitation conditions to shale shaker body. In the future, we will analyze the influence of the particle removal efficiency of the shale shaker.

Study on Vibration and Fatigue Analysis for Plastic Suspension Mat of Automotive Seat (자동차 시트의 플라스틱 서스펜션 매트의 진동과 피로해석에 관한 연구)

  • Choi, Hae-Kyu;Kim, Key-Sun;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.504-509
    • /
    • 2012
  • Automotive suspension mat is installed at seat back frame. As the back part of passenger is aupported by suspension mat, it is prevented from the pressure concentration. The tired feeling at driving is minimized and the comfortable feeling is increased. In this study, vibration and fatigue are analyzed with plastic suspension mat modelled by 3 Dimension. By the analysis result, the natural frequency becomes 30 Hz with life of $10^6$ cycle and safety factor of 1.6055. Development time and evaluation cost can be cut down by utilizing this analytical technique.

Strengthening Capacity of Bridge Deck Strengthened with Carbon Fiber Rod and Polymer Mortar (고강도 폴리머 모르타르 및 탄소섬유 봉(Rod)으로 보강된 교량 바닥판의 보강성능)

  • Sim Jongsung;Moon Do-Young;Ju Mm-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.213-220
    • /
    • 2004
  • This paper deals with an enhanced structural capacity of reinforced concrete bridge deck strengthened with carbon fiber rod (CFR) which is subjected to monotonic and cyclic loads. Strengthening variables considered in this test were evenly and unevenly strengthening type. To evaluate strengthening capacity for these two strengthening types, load-carrying capacity and crack and failure pattern from the failure test were analyzed and fatigue response were examined. According to the test results, all the strengthened specimens showed punching shear failure as a result of premature failure of bonding interface between mortar and concrete. In the case of strengthening capacity, it was observed that the strengthened specimens was more effective in strength, stiffness and fatigue endurance limit than the unstrengthened specimen. In addition, the unevenly strengthening method (CR-UE) was more effective than the evenly strengthening method (CR-E).

Mechanical Loads of Dropper for High Speed Electric Railway (고속 전차선로 드로퍼에 대한 기계적 하중에 관한 연구)

  • Lee, Gi-Chun;Lee, Tae-Hoon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The dropper supports the contact wire and is attached using various types of dropper clips on the catenary. Droppers are subject to mechanical stress from buckling during the passage of pantographs. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the pre-sag of the dropper static load. The measured values in the experiment were similar to the theoretical predictions. To analyze the cause on fracture of dropper wire, we have conducted analysis such as SEM(Scanning Electron Microscope) of fractured specimens in the field and new specimens. Finally, we performed measurement for the variation of dynamic load on the dropper when a pantograph moved at 300km/h under the Korean high speed overhead line. If such mechanical load occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. This results will be used for special management of high speed catenary system maintenance and life estimation of dropper.

Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading (저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가)

  • Dewa, Rando Tungga;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

Evaluation of Rail Fatigue Life by Rail Grinding in the High Speed Railway (레일연마에 따른 고속철도 레일 피로수명 평가)

  • Park, Won-Seo;Lim, Hyung-Jun;Park, Yong-Gul;Sung, Deok-Yong;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.783-792
    • /
    • 2011
  • The control of rail surface irregularity is very important for the high speed train service in the high speed rail. In order to manage it, initial, preventative, and maintainable rail grinding have been performed and among them, preventative rail grinding conducts in every each year. This study carried out the field test for dynamic track response according to rail surface irregularity comparing before and after rail grinding. In addition, the change of dynamic track responses according to rail grinding was analyzed and the fatigue life was estimated though Rainflow Counting Method and RMC Equivalence Stress. Therefore, it suggested that rail fatigue life should be increased by rail grinding, because amount of impact occurred on track is decreased by getting rid of rail surface irregularity.

  • PDF