• Title/Summary/Keyword: 피로 수명 평가

Search Result 506, Processing Time 0.027 seconds

A Study of Fatigue Strength Assessment for Hopper Knuckle of Bulk Carrier According to Joint Shape Change (산적화물선 호퍼 너클 이음부의 형상 변화에 따른 피로강도평가에 관한 연구)

  • Shim, Chun-Sik;Lee, Hoon-Dong;Hwang, Jeong-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.335-338
    • /
    • 2009
  • 일반적으로 비중이 큰 철광석이나 석탄 등을 운반하는 선박화물선의 호퍼 너클 이음부는 여러 판이 용접되어 복잡한 형상을 가지고 있어 응력이 집중되어지므로 피로강도평가 시 많은 문제점이 노출되는 구간이다. 이번 연구에서는 기존 sloping 방식의 호퍼 너클 이음 부를 갖는 180k 산적화물선 표준 모델과 제안 되어진 round 방식의 호퍼 너클 이음 부를 갖는 산적화물선에 대하여 구조강도평가와 피로강도평가를 수행하였다. 이때 합리적인 비교를 위하여 제안되어진 모델은 기존의 표준 모델의 화물창과 발라스트창의용적이 일치하도록 제안하였다. 또한 CSR을 기반으로 한 하중들에 대하여 허용응력과 25년 피로수명을 만족하도록 구조부재를 결정하였으며 피로강도평가 결과를 바탕으로 호퍼 너클부의 변화에 따른 선각 중량과 상대 건조 비 개념을 이용하여 보다 효율적인 구조를 제시 하였다.

  • PDF

Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure (미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Many tests are required to predict the fatigue life of composite laminates made of various materials and having different layup sequences. Aiming at reducing the number of tests, a methodology was presented in this paper to predict fatigue life of composite laminates based on fatigue life prediction of constituents, i.e. the fiber, matrix and interface, using micromechanics of failure. For matrix, the equivalent stress model which is generally used for isotropic materials was employed to take care of multi-axial fatigue loading. For fiber, a maximum stress model considering only stress along fiber direction was used. The critical plane model was introduced for the interface of the fiber and matrix, but fatigue life prediction was ignored for the interface since the interface fatigue strength was presumed high enough. The modified Goodman equation was utilized to take into account the mean stress effect. To check the validity of the theory, the fatigue life of three different GFRP laminates, UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S and TX[$0^{\circ}/{\pm}45^{\circ}$]S was examined experimentally. The comparison between predictions and test measurements showed good agreement.

Analysis for Defect Evaluation of Pipes in Nuclear Power Plant (원전 배관의 결함 평가를 위한 해석)

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3121-3126
    • /
    • 2013
  • The integrity evaluation of pipes in nuclear power plant are essential for the safety of reactor vessel, and integrity must be assured when flaws are found. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Fatigue design and life assessment are the essential technologies to design the structures such as pipe, industrial plant equipment and so on. The effect of crack spacing on stress intensity factor K values was studied using three-dimensional finite element method (FEM). For the case of cylinder under internal pressure, a significant increase in K values observed at the deepest point of the surface crack. Also, this paper describes the fatigue analysis for cracked structures submitted to bending loads.

The Effect of Plastic Working on the Membrane Fatigue Life (소성가공이 멤브레인 피로 수명에 미치는 영향)

  • Yoon I. S.;Kim J. K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.1-5
    • /
    • 2005
  • An investigation was made on the fatigue characteristics of type 304 stainless steel membrane manufactured by plastic working. To investigate the effect of plastic deformation, tests were performed with 5 types of specimens having different amount of plastic deformation. Fatigue tests were executed under both room and LNG temperatures $(-162^{\circ}C)$. All the test results were compared with the fatigue data provided by RPIS (Recommended Practice for Inground LNG Storage Tank). On the basis of these results, it was confirmed that RPIS's design fatigue curve could be applied to evaluate fatigue life of KOGAS membrane manufactured by pressing.

  • PDF

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

A Study on Fatigue Assessment of the Crane Post due to Vibration during the Emergency Stop (충격하중에 의한 Jib Crane Post의 피로 수명 평가)

  • Kim, Kuk-Su;Kim, Nho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.633-637
    • /
    • 2011
  • The tall and slender main crane is generally installed on the upper deck to load and unload the equipment or something heavy in the drilling rig or the ship. So the natural frequency of the crane equipment is very low, therefore, there is some possibility of excessive vibration at the emergency state due to sudden stop during the crane operation. This study describes a fatigue assessment due to heavy vibration during brake test of sudden stop because it is necessary the safety of crane is estimated against the heavy vibration. In order to find out the applied force, the vibration measurement and analysis have been performed.

  • PDF

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

Fatigue analysis for structural stability review of TBM cutterhead (TBM 커터헤드의 구조안정성 검토를 위한 피로해석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.529-541
    • /
    • 2020
  • Although TBM's cutterhead requires design review for fatigue failure due to wear-induced section loss as well as heavy load during excavation, it is difficult to find a case of fatigue analysis for TBM cutterhead at present. In this study, a stress-life design review was conducted on cutter heads with a diameter of 8.2 m using S-N curves as a safety life design concept. Also, we introduced the fatigue design method of construction equipment and the method of assessing fatigue damage and explained the results of the fatigue analysis on the TBM cutter head with a diameter of 8.2 m. The S-N curve has been shown to play a key role in fatigue design and can also be used to assess how much fatigue damage a structure is suffering from at this point in time. In the future, it is necessary to find out when fatigue problems occur during using the equipment and when it is good to conduct safety inspections of the equipment.