• Title/Summary/Keyword: 피로효과

Search Result 754, Processing Time 0.026 seconds

Fatigue Tests on Transverse Joints of Precast Prestressed Concrete Bridge Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량 바닥판의 연결부에 관한 피로실험)

  • 정철헌;김영진;장성욱;김철영;심창수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.159-165
    • /
    • 1998
  • 중트럭 통행으로 인한 철근콘크리트 교량바닥판의 열화는 교량구조물을 유지보수하는데 있어 심각한 문제 중 하나이며, 프리캐스트 바닥판을 이용한 교량바닥판의 시공 및 교체 방법이 실용적이며 효과적인 방법으로 인식되고 있다. 본 연구에서는 횡방향 ddusruf부에 종방향 프리스트레싱을 도입한 프리캐스트 바닥판의 모델을 제작하여 바닥판간 횡방향 연결부의 강성 평가 및 연결부의 피로 거동을 파악하기 위해서 피로실험을 수행하여 피로하중하에서의 휨강성의 변화, 균열발생 및 파괴하중 등을 측정하였다. 실험결과를 통해서 피로하중하에서 프리스트레스 프리캐스트 부재의 프리스트레스 효과를 평가하였으며, 현장타설에 의해서 시공되는 일반 RC 부재에 비해서 우수한 구조적 거동을 보여주는 적정량의 종방향 프리스트레스 크기를 결정하였다.

A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy (판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분)

  • Kim, Seung-Gwon;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1415-1422
    • /
    • 2011
  • Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, $U_{i}^{equ}=f(R_t)$ which is determined by the shape factor, thickness ratio, $R_t$ and the loading factor, equivalent effective stress intensity ratio depending on thickness, $U_{i}^{equ}$. And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using ${\Delta}K$ conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, ${\Delta}K$ (DoS) and identified the relation between them to present the nature of thickness effect in this work.

Fatigue Life Estimation Method Considering Traffic Properties for Steel Highway Girder Bridge (교통특성을 고려한 강도로교의 피로수명 평가 방안)

  • Lee, Hee-Hyun;Kyung, Kab-Soo;Jeon, Jun-Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.209-218
    • /
    • 2010
  • The fatigue phenomenon, which is induced by stress accumulation due to the repeated loading of vehicles in the long term, is one of the main factors of the span of life of a steel bridge. In this paper, the effects of traffic properties on the fatigue life of ordinary short- and medium-span steel plate girder bridges that are exposed to relatively large dynamic effects are investigated. From the analysis, it was known that the fatigue life of the bridge becomes shorter with increasing traffic volume and number of large vehicles, and is affected by the weights of the vehicles. Based on the analysis results, a new parameter that can represent the traffic property that affects the fatigue life of the subject bridge is suggested, and the validity of the parameter is confirmed.

Thickness Effect on Compressive Fatigue Behavior of Al-Si-Ca Alloy Foam (Al-Si-Ca 합금 폼의 피로 거동에 대한 두께 효과)

  • Kim, Il-Hyun;Hossain, Mynul;Kim, Am-Kee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.179-182
    • /
    • 2007
  • The compressive fatigue tests on the closed cell Al-Si-Ca alloy foams with two different thicknesses were performed using a load ratio of 0.1. The quasi-static and cyclic compressive behaviors were obtained respectively. The fatigue stress-life (S-N) curves were evaluated from the obtained cyclic compressive behaviors. S-N curves were presented for the onset of progressive shortening. It turned out that the fatigue strength showed higher value for the thicker foam and the onset of shortening of thinner foam took place earlier. The crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting.

  • PDF

Fatigue Crack Growth Behavior of a Continuous Alumina Fiber Reinforced Metal Matrix Composite Materials (알루미나 장섬유 강화 복합금속재의 피로균열성장거동)

  • Doo Hwan, Kim;Lavernia, E.J.;Earthman, J.C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • The effects of heat treatment on fatigue crack growth behavior were studied in continuously reinfored, magnesium-based composite (FP/ZE41A). Following an earlier TEM investigation, specimens were thermally aged to modify the interfacial zone between the alumina fibers and mg alloy matrix. The fatigue crack growth experiments were conducted with specimens having the fiber orientation normal to the crack growth direction(longitudinal) and also specimens with the fibers oriented parallel to the crack growth direction(transverse). A comparision of the fatigue crack growth behavior indicates that aged longitudinal specimens are more resistant to fatigue crack growth than as-fabricated longitudinal specimens. Conversely, as-fabricated transverse specimens are more resistant to fatigue crack growth than aged transverse specimens. SEM observations of fiber pullout and ductile tearing on the fatigue fracture surfaces indicate that the aging weakens the strength of the fiber/matrix interface, giving rise to the observed fatigue crack growth behavior.

  • PDF

A Practical Model for the Fatigue Reliability Analysis of Steel Highway Bridges (강도로교의 피로신뢰성 해석을 위한 실용적 모형)

  • 신재철;장동일;이성재;조효남
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.113-122
    • /
    • 1988
  • A practical model for predicting the risk of fatigue failure of steel highway bridges is developed in this study. The proposed model is derived from fatigue reliability methods by incorporating various factors which may affect the fatigue life of bridges. The fatigue reliability function is assumed to follow the Weibull distribution. The computational form of the Weibull is adopted from Ang-Munse's approach that includes all the statistical uncertainties of the fatigue life of steel members and the stress ranges under variable amplitude loadings. The model accounts for the variation in ADTT, the change in stress history and the effects of inspections, which may occur during the serivce life of bridges. Stress range histograms are collected from the random stress spectra based on the field measurements of an existing bridge, and, thus, the resulting stress range frequency distribution is modelled with a beta distribution. The results of applications of the proposed fatigue analysis methods to an existing bridge show that the proposed models with the computer program developed for numerical computations can be used as a practical tool for the fatigue rating or for the predictions of the remaining fatigue life of deteriorated existing steel bridges.

  • PDF

Fatigue Strength of Dental Implant in Simulated Body Environments and Suggestion for Enhancing Fatigue Life (생체유사환경 하의 치과용 임플란트의 피로강도 평가 및 수명 향상법)

  • Kim, Min Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2014
  • Fatigue tests were performed in various simulated body environments reflecting various factors (such as body fluids, artificial saliva) relevant within a living body. First, the fatigue limit under a simulated body environment (artificial saliva) was evaluated and the governing factors of implant fatigue strength were looked into by observing the fracture mode. The fatigue life of an implant decreased in the artificial saliva environment compared with that in the ringer environment. Furthermore, in the artificial saliva environment, the implant fracture mode was fatigue failure of fixture as opposed to the abutment screw mode in the ringer environment. In the fatigue test, corrosion products were observed on the implant in the simulated body environment. A larger amount of corrosion products were generated on the artificial saliva specimen than on the ringer specimen. It is thought that the stronger corrosion activity on the artificial saliva specimen as compared with that on the ringer specimen led to an overall decrease of fatigue life of the former specimen. In the case of the implant with a nitrided abutment screw eliminated hardened layer (TixN), a several times increase in fatigue life is achieved in comparison with tungsten carbide-coated implants.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

A Study on Local Distribution of Fracture Toughness for Welded Joints of Steel Structure (구조강(構造鋼) 용접부(鎔接部)의 국부인성분포(局部靭性分布)에 관한 연구(研究))

  • Chang, Dong Il;Young, Hwan Sun;Kim, Dong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1984
  • In the welded structure, the most dengerous section is welded parts and almost fractures of welded structure occur from welded parts. Accordingly, in other to prevents of fracture, it is important seeking the fracture behavior of welded parts. In this study as basic investigation of fracture behavior of welded parts, it is investigated that local distribution of fracture toughness and effect of multipass electrode welding, also effect of release of residual stress were investigated, as the subjected. material, the used steel having fatigue history and unused steel were selected. As the result of this study, it is dear that the base metal of unused steel and heat affected zone and weld metal are different each other in fracture toughness, and it seems clear that the weld metal may will become source of fracture because of it having the most low fracture toughness. Especially, in the case of crack occur in the used steel, it will be the most brittle section in the structure because of it having low fracture toughness then weld metal. It affirmation that, if welded parts has not flaw, the multi pass electrode welding effective to improve of fracture toughness, also release of residual stress is none effective to improve of fracture toughness in this study.

  • PDF