• Title/Summary/Keyword: 피로손상스펙트럼

Search Result 29, Processing Time 0.024 seconds

Damage Tolerance Assessment for Fatigue-Critical Locations of Wing Structure of Aged Aircraft (장기운영 항공기 주익 구조물 피로임계부위의 손상허용평가)

  • Chun, Young-Cheol;Kim, Won-Cheol;Jin, Ji-Won;Chung, Tae-Jin;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • This study aims to assess the damage tolerance of the wing structure of aged aircraft with long-term service through the fatigue crack growth analysis and tests. For the fatigue-critical locations (FCL) W2 and W4 in the wing structure, the fatigue stress spectrum was derived based on a previous study. Thereafter, a crack propagation analysis for the FCLs was conducted using the commercial software $NASGRO^{TM}$. The algorithm for the fatigue stress spectrum was verified. Fatigue crack growth tests were then performed for two types of specimens: Type #1 was extracted from the wing structure of aged aircraft, and Type #2 was made of the same material as the wing structure. By comparing the experimental results of these specimens, we assessed the damage tolerance of the wing structure of aged aircraft with service time.

Prediction of Fatigue Life for Composite Rotor Blade of Multipurpose Helicopter Using Strength Degradation Model (강도저하모델을 이용한 다목적헬리콥터용 복합재로터깃 피로수명예측)

  • 권정호;서창원
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.50-59
    • /
    • 2001
  • The predictions of residual strength evolution and fatigue life of full scale composite rotor blade for multipurpose helicopter were studied using a strength degradation model. Flight-by-flight load spectrum was developed on the basis of FELIX standard spectrum data. The laminated structural analysis was also performed to obtain corresponding local stress and/or strain spectra for each ply of laminate skin and glass roving spar structures around the blade root where fatigue damage was severely anticipated.

  • PDF

Fatigue Behavior and Probabilistic Fatigue Analysis of Concrete Offshore Structures (콘크리트 해양구조물(海洋構造物)의 피로거동(疲勞擧動)과 확률론적(確率論的) 피로해석(疲勞解析))

  • Oh, Byung Hwan;Kim, Jee Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.31-41
    • /
    • 1988
  • Recently, the offshore structures are increasingly constructed to explore the natural resources. These offshore structures are to be designed to resist the repetitive wave forces. A probabilistic method for the fatigue analysis of offshore concrete structures is presented in this study. The present spectral fatigue analysis calculates wave forces first and then the transfer functions for unit waves from which stress spectra are determined. The calculated fatigue stresses may then be used to evaluate the fatigue damage of concrete structures. A simplified model for the estimation of fatigue damage of the structures, which employs only the probabilistic moments of the peak stress distribution without direct integration, is also proposed. The present study allows more realistic fatigue analysis of offshore concrete structures.

  • PDF

Fatigue Damage Estimation of Wide Band Spectrum Considering Various Artificial Neural Networks (다양한 인공 신경망을 적용한 광대역 스펙트럼의 피로손상 예측)

  • Park, Jun-Bum;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.341-348
    • /
    • 2016
  • The fatigue damage caused by wide band loadings has generally been predicted using fatigue damage models in the frequency domain rather than a rain-flow counting method in the time domain because of its computation cost. This study showed that these fatigue damage models can be simplified in the form of normalized fatigue damage as a function of the S-N curve slope and bandwidth parameters. Based on numerical simulations of various wide band spectra, it was found that fatigue damage models in the form of normalized fatigue damage with one S-N curve slope and two bandwidth parameters( α1 , α2 ) provided less reasonable fatigue damage. Therefore, an additional bandwidth parameter needs to be considered based on a sensitivity study using various neural networks, which proved that α1-5 would be the dominant factor of a fatigue damage model as an additional bandwidth parameter.

An Efficient Algorithm in Spectral Fatigue Analysis of Ship Structures (선체의 스펙트럼 피로해석에 대한 효율적인 계산방법)

  • Jeung-Je Kim;Bum-Sang Yoon;Park-Dal-Chi Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.93-101
    • /
    • 1993
  • This paper deals tilth an efficient algorithm in spectral fatigue analysis of ship structures. The concept of stress influence coefficients is suggested in order to obtain stress transfer functions efficiently which are the structural responses for unit load components. Strip method is applied to obtain the motion response and pressure distributions exerted on the hull. Since a number of the structural analysis should be performed for the various wave frequencies and heading angles in the spectral analysis, the algorithm developed in this study improves the efficiency of the analysis. Finally, the calculation example with application to this concept is shown in this paper.

  • PDF

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

Fatigue Damage Model Comparison with Tri-modal Spectrum under Stationary Gaussian Random Processes (정상 정규분포 확률과정의 삼봉형 스펙트럼에 대한 피로손상 모델 비교)

  • Park, Jun-Bum;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The riser systems for floating offshore structures are known to experience tri-modal dynamic responses. These are owing to the combined loadings from the low-frequency response due to riser tension behavior, middle-range frequency response coming from winds and waves, and high-frequency response due to vortex induced-vibration. In this study, fatigue damage models were applied to predict the fatigue damages in a well-separated tri-modal spectrum, and the resultant fatigue damages of each model were compared with the most reasonable fatigue damage calculated by the inverse Fourier transform of the spectrum, rain-flow counting method, and Palmgren-Miner rule as a reference. The results show that the fatigue damage models developed for a wide-band spectrum are applicable to the tri-modal spectrum, and both the Benasciutti-Tovo and JB models could most accurately predict the fatigue damages of the tri-modal spectrum responses.

A Study on Accelerated Fatigue Life Testing for Industrial Inverter (산업용 인버터의 가속 피로수명 평가에 관한 연구)

  • Lee, Sanghoon;Kim, Won-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

Fatigue Life Evalution for Composite Blade by Using the Measured Load Spectrum and S-N Linear Damage Method (측정 하중 스펙트럼과 S-N 선형 손상 방법을 이용한 복합재 회전날개의 피로 수명 평가)

  • 공창덕;방조혁;김종식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.20-20
    • /
    • 1998
  • 풍력발전용 회전날개의 구조설계 요구조건은 크게 제한 강도 요구조건(Limit strength requirement), 강성도 요구조건(Stiffness requirement), 피로수명 요구조건(Fatigue life requirement)의 세 가지를 들 수 있다. 첫째로 제한 강도 요구조건은 운용기간 중에 발생할 수 있는 최대하중에 견딜 수 있어야 하며, 폭풍이나 돌풍의 상황에 대한 안전성을 의미한다. 둘째로 강성도 요구조건은 운용 중 공진을 피하기 위한 고유진동 수확보, 타워와의 충돌을 피하기 위한 변위의 제한, 공력성능의 변화를 피하기 위한 비틀림각의 제한등이 있다 셋째로 피로수명에 대한 요구조건은 요구피로수명 동안에 예상되는 반복하중에 견딜 수 있어야 한다.

  • PDF

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.