입력된 영상의 해상도가 일정한 인수에 의해 연속적으로 감소하는 영상더미를 영상피라미드라 한다. 피라미드에서 가장 저해상도를 가진 고레벨 영상의 크기는 작기 때문에 적은 연산수로도 물체를 추출해 낼수 있으나, 추출된 물체가 저해상도로 인해 정확히 표현되지 못한다. 기존에 피라미드를 이용한 물체추출 알고리즘들은 연속적인 피라미으 레벨상에서 이웃 레벨에 링크개념을 적용하여 나무(tree)구조를 형성하게 하는 bottom-up 방식을 이용하여 형성된 축소영상에 분할을 시도하여 물체를 추출하고 이를 원영상의 해상도로 표현하기 위하여 bottom-up의 역과정을 각 레벨에 적용하여 물체를 추출하였다. 본 논문에서는 고레벨에서 추출된 물체를 더욱 정확히 표현하기 위하여 각 레벨에서 추출된 물체가 최적경계상태를 이룰 수 있도록 하기 위한 방법인 경계조정 알고리즘을 제안하고, 이를 top-down방식과 결함하여 원영상의 저레벨까지 반복적으로 적용하여 원영상의 해상도에서 물체를 정확히 추출한다. 본 논문에서 제안한 방식은 반복적인 경계조정을 이용함으로써 링크개념을 이용한 방법들 보다 계산과정이 간단하며, 얻어진 결과가 기존에 사용된 방법 보다 연산량의 감소로 인해 계산과정에서 요구되는 시간이 적게 소요됨과 동시에 인식된 물체의 경계부분이 정확히 추출됨을 알 수 있고, 잡음영상에서도 본 알고리즘을 결과가 인식하기에 합리적임을 알 수 있다.
본 논문에서는 매개변수 없이 입력 문서 영상을 최대 동질 영역들로 분할한 다음, 각 동질 영역을 텍스트, 그림, 표 그리고 선으로 자동 분류하는 새로운 방법을 제안한다. 다단계 분석과 하향식 접근 방법을 사용하기 위하여 문서 영상을 피라미드 구조로 계층화하였으며, 어떤 영역을 분할할 지의 여부를 결정하기 위하여 그 영역의 주기성을 이용하여 판단하였다. 이러한 주기성 정보를 이용함으로써, 어떠한 매개변수 없이도 활자체 크기와 행간에 무관하게 텍스트 영역을 정확히 분석할 수 있었으며, 피라미드 구조를 만드는데 걸리는 시간이 질감 분석 접근방법보다 빠른 방법으로 설계되었다. Washington 대학의 문서 영상 데이터베이스를 이용한 실험 결과, 제안된 방법이 기존의 방법들보다 더 정확하게 문서 영상을 분할 및 분류할 수 있음을 확인할 수 있었다.
지능형 차량 시스템에 있어서 교통 표지판 검출/인식은 매우 중요한 요소들 중의 하나이다. 따라서 주행 중인 차량에서 카메라로부터 취득한 영상을 이용하여 교통 표지판을 인식하는 여러 가지 영상인식 알고리즘들이 개발되고 있다. 하지만 이러한 알고리즘은 표지판의 색상 값이 날씨와 시간에 따른 조도와 컬러의 변화에 따라 성능이 크게 변한다는 점에서 어려움을 겪고 있다. 따라서 본 논문은 환경 변화에 강인한 교통 표지판 검출 및 인식 알고리즘을 제안한다. 구체적으로, 표지판 검출을 위하여 제안하는 알고리즘에서는 색상과 형태 정보를 이용하여 교통 표지판 후보군을 찾는다. 여러 색상 임계값에 대하여 영상 피라미드 형태를 만들고, 모든 피라미드 영상들에 대해서 인식 알고리즘을 수행함으로써 실외 빛에 변화에 강인하게 한다. 교통 표지판 후보군을 찾은 후, 후보군들을 Linear SVM을 통해 학습함으로써 교통 표지판인지 아닌지 분류해낸다. 실험 결과는 제안하는 알고리즘이 정확하게 교통 표지판을 인식하고, 동시에 실외 빛의 변화에 상관없이 강인하게 표지판을 인식함을 보여준다.
본 논문은 비디오 시퀀스에 카메라 패닝 보상과 2차원 시공간 엔트로피 임계법을 적용하여 추출한 객체포함영역을 대상으로 영상 분할을 수행하는 이동 객체 분할 기법에 관한 것이다. 우선, 웨이블렛 변환에 의해 구성한 피라미드 계층 구조상에서 카메라 패닝 벡터를 추정하여 전역 움직임을 보상한다. 이후, 전역 움직임이 보상된 기준영상을 대상으로 각 프레임간에서 2차원 시공간 엔트로피 임계법을 적용하여 이동 객체가 포함될 가능성이 있는 영역을 블록 단위로 추출한다. 다음으로, 2차원 시공간 엔트로피 입계법에 의해 분류된 영역을 토대로 각 블록을 움직임블록, 준 움직임 블록, 비 움직임 블록 중 어느 하나로 분류한 검색 테이블을 작성한다. 이어서, 검색 테이블을 참조하여 초기 탐색 계층 및 탐색 영역을 적응적으로 선정함으로써 피라미드 계층 구조상에서 효율적인 고속 움직임 추정을 수행하여 이동 객체에 해당하는 객체포함영역만을 추출한다. 최종적으로, 이렇게 추출된 객체포함영역에서 임계 기울기 영상을 정의한 후, 이를 기준 삼아 객체포함영역에 화소 단위의 형태학 기반 영상 분할 알고리즘을 적용함으로써 비디오 시퀀스에 포함된 이동 객체를 분할한다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방법은 이동 객체에 대한 상대적으로 우수한 분할 특성을 제공할 수 있고, 특히 저대조 경계면의 분할 특성을 제고시키고 있음을 확인할 수 있다.
딥 러닝 네트워크에서 사용되는 특징 맵은 일반적으로 영상보다 데이터가 크며 특징 맵을 전송하기 위해서는 영상의 압축률보다 더 높은 압축률이 요구된다. 본 논문은 딥러닝 기반의 영상처리에서 객체의 크기에 대한 강인성을 가지는 FPN 구조의 네트워크에서 사용되는 피라미드 특징 맵을 높은 압축률로 전송하기 위해 제안한 복원-예측 네트워크를 통해 전송된 일부 계층의 피라미드 특징 맵으로 전송하지 않은 계층의 피라미드 특징 맵을 예측하며, 압축으로 인한 손상을 복원하는 구조를 제안한다. 제안한 방법의 COCO 데이터셋 2017 Train images에 대한 객체 탐지의 성능은 rate-precision 그래프에서 VTM12.0을 통해 특징 맵을 압축한 결과 대비 BD-rate 31.25%의 성능향상을 보였고, PCA와 DeepCABAC을 통한 압축을 수행한 방법 대비 BD-rate 57.79%의 성능향상을 보였다.
This paper introduces an improved surface matching algorithm that can be used to reconstruct the surface topography of an object that is scanned from multiple overlapping regions by an AFM. The essence of the image matching technique is stitching two neighboring images intentionally overlapped with each other. To enhance the computational efficiency, this paper introduces a pyramid matching algorithm which makes use of reduced images for primary images. The results show that the proposed image pyramid matching algorithm is useful fer enhancing the computational efficiency.
본 논문은 도로상에 설치한 고정 카메라로부터 획득된 비디오 영상으로부터 이동물체를 검출하는 방법을 제안한다. 제안된 방법은 배경과 입력 비디오 프레임에서 가우시안 피라미드를 사용한 배경 차영상 기법에 기반하며, 입력 비디오 프레임과 배경영상의 오정합으로 발생하는 오검출을 줄이는데 화소기반 방법에 비해 효과적이다. 차영상에서 임계값을 효과적으로 결정하기위하여 각 프레임에서 Otsu의 방법으로 계산된 임계값에 스칼라 칼만필터를 적용하여 필터링하였다. 실험 결과 도로 비디오 영상에서 움직이는 물체를 효과적으로 검출함을 보였다.
역광 조명에서 촬영된 영상은 한 장면에 지나치게 밝은 부분과 어두운 부분이 혼재되어 있어서 이를 전역적인 처리로 화질을 개선하는데는 한계가 있다. 본 논문은 역광 촬영된 사진을 각각 어두운 영역과 밝은 영역을 개선하는 두 장의 가상 영상으로 만들어 이를 원본 영상과 함께 라플라시안 피라미드로 융합하여 사진의 품질을 개선하는 방안에 대해 소개한다. 제안된 기법은 두 장의 가상 영상을 만들 때 LUT로 단순화할 수 있는 히스토그램 스트레칭과 감마변환을 활용하여 연산 부담을 저감하였다. 또한 색상 강화된 영상을 얻기 위해 HSV 좌표계를 사용하여 휘도에 대해서만 명암 변환을 실시하였다. 제안된 기법은 표준 영상 데이터 세트를 사용하여 몇 가지의 NIQA 지표를 산출하여 그 효용성을 보였다.
본 논문에서는 디지털 영상에서 얼굴 영상 검출을 위해 픽셀의 퍼지 소속도를 이용하여 신경망으로 학습하는 퍼지 신경망을 이용한 얼굴영상 검출을 제안한다. 입력 영상의 피라미드 영상에서 추출된 20$\times$20 윈도우 템플릿 영상안의 각 픽셀의 소속도로 얼굴 영상 패턴을 학습하여 얼굴 영상을 검출하는 방법은 단순히 영상의 픽셀 값 하나씩만을 고려해서 각 픽셀의 소속도를 고려하여 수행하는 얼굴 영상 분할보다 얼굴 영상을 훨씬 더 정확하고 인식률이 높게 검출해 낼 수 있다.
본 논문에서는 디지털 영상에서 얼굴 영상 검출을 위해 픽셀의 퍼지 소속도를 이용하여 신경망으로 학습하는 퍼지 신경망을 이용한 얼굴영상 검출을 제안한다. 입력 영상의 피라미드 영상에서 추출된 20$\times$20 윈도우 영상 안의 각 픽셀의 소속도로 얼굴 영상 패턴을 학습하여 얼굴 영상을 검출하는 방법은 단순히 영상의 픽셀 값 하나씩만을 고려해서 각 픽셀의 소속도를 고려하여 수행하는 얼굴 영상 분할보다 얼굴 영상을 더 정확하고 인식률이 높게 검출해 낼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.