• Title/Summary/Keyword: 피드 모터

Search Result 12, Processing Time 0.017 seconds

Development of Pellet-type Artificial Diet for Lepidopteran Insect by Using a Twin Screw Extruder (나비목 곤충용 펠렛사료 조제법 개발)

  • Seol Kwang-Youl;Hong Seong-Jin;Kim Nam-Jung;Kim Seong-Hyun
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.75-78
    • /
    • 2006
  • Development of pellet-type artificial diet for insect was tried by using a twin screw extruder(TSE). Screws were arranged several times and two reverse screws were equipped on the foreparts of 2 axes of TSE. Pellet-type diet could be produced successfully under conditions of TSE set as the following. : 300 rpm of main motor speed, 228 rpm of feed motor speed, $75m{\ell}/min$ of running water speed and 5 mm of extrusion diameter. The optimum adding quantity of water to the manufactured diet was $1.2{\sim}1.5$ times of dry diet. On the rearing results of beet armyworm, Spodoptera exigua and common cutworm, Spedoptera litura with the pellet-type diet, the final survival ratio (emergence rate) of these two species was over than 50%, and so it was concluded that the manufactured pellet-type artificial diet was sufficient dietetically to rear those insects.

Design of Low-cost Automated Ventilator Using AMBU-bag (암부백을 이용한 저가형 자동 인공호흡기 설계 및 제작)

  • Shin, Hee-Bin;Lee, Hyo-Kyeong;Oh, Ga-Young
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.