• Title/Summary/Keyword: 플룸해석

Search Result 65, Processing Time 0.023 seconds

An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model (상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.857-862
    • /
    • 2011
  • 3 dimensional turbine exhaust gas flow was simplified to an axisymmetrical flow and calculated with detailed chemistry models. GRI 35 species-217 reaction step model and simplified 11 species 15 reaction model was applied to the secondary reaction of the turbine exhaust gas and compared. All the model captured the secondary combustion on the base region, and the temperature was 600K higher than that without turbine exhaust gas. This means the local temperature of the base can be higher in the case of real 3 dimensional flow. The simplified model show the similar results to the GRI detailed chemistry model although the former affected the engine plume structure slightly.

  • PDF

Study on Appropriateness of a Remote Facility for Discharge Measurement in Small Stream by 3-Dimensional Flow Analysis (3차원 흐름해석을 통한 소하천 원격유량측정시설의 적정성 연구)

  • Kim, Jong-Chan;Hong, Kee-Hoon;Ko, Jae-Min;Kim, Chin-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.457-461
    • /
    • 2010
  • 소하천에서의 효율적인 유량측정 수행을 위해서 K-water(한국수자원공사) 충청지역본부에서는 금강유역의 보청천 지류인 곰쟁이천에 원격유량측정시설 개념의 위어(weir)를 이용한 고정단면 시설물을 2006년도에 설치하였으며, 2007년부터 2009년까지 시설물 직하류에서 도섭을 통한 유량측정을 실시하였고 3차원 흐름해석 결과와의 비교를 통해 소하천 원격유량측정시설의 적정성을 분석하였다. 총 55회의 유량측정 성과를 이용하여 수위-유량 관계곡선식을 산정하였으며, FLOW-3D를 이용하여 3차원 흐름해석을 실시하였다. Francis 유량산정 공식인 Q=$1.84bH^{3/2}$을 통해 계산되는 수위별 유량, 유량측정 성과에 의한 수위-유량 관계곡선식, 그리고 FLOW-3D로부터 계산된 수위별 유량을 비교하였으며, 실측유량과 계산된 유량의 차이를 비교 검토하였다. 이러한 비교 검토를 통해 소유량 구간에 대해서는 원격유량측정시설의 적정성을 확인할 수 있었으며, 갈수시 미소유량이 흐르는 소하천에 위치한 지점에 대해서는 인력 및 비용이 많이 소요되는 도섭을 통한 직접 유량측정 수행보다는 검증된 유량측정시설(위어, 파샬플룸 등)을 통한 유량측정이 더욱 효과적인 것으로 판단되었다.

  • PDF

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.

단면조도계수를 이용한 자연하천 유량 산정

  • Lee Sang Jin;Hwang Man Ha;Ko Ick Whan;Lee Baesung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1159-1163
    • /
    • 2005
  • 자연하천에서의 유량측정은 직$\cdot$간접유속측정을 통하여 이루어진다. 홍수기는 주로 봉부자에 의한 방법을 이용하고 평$\cdot$갈수기에는 파샬플룸이나 유속계에 의한 방법을 이용한다. 이 방법은 측정지점의 상태 또는 기술자의 숙련도에 따라 많은 오차를 발생시키고 연속적인 관측의 어려움을 가진다. 본 연구는 자연하천의 기본적인 수리학적 정보와 하천의 수리특성을 나타내는 조도계수를 유량규모별로 추정하여 유량을 산정하는 기법을 활용하여 자연하천 유량자료의 연속적인 획득이 가능한 프로그램을 개발하였다. 대상지점으로 금강 대청댐 하류 공주지점을 선정하여 2003년$\~$2004년의 유량실측 자료를 바탕으로 유량 측정하고, 단면의 적절한 조도계수를 추정하여 유량을 산정하였다. 이를 통하여 기존 수위-유량관계곡선식의 신뢰성을 평가하고, 실측값에 근사한 유량을 연속적으로 산정할 수 있도록 하였으며, 이를 적용하여 향후 수문해석, 유출분석등에 활용하고자 한다.

  • PDF

The Compressible flow structure behind the exit of a two-dimensional supersonic micro-nozzle (2차원 소형 초음속 노즐 하류의 압축성 유동 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.323-326
    • /
    • 2006
  • This paper presents the computational results for the two-dimensional compressible non-reacted flow in a converging-diverging micro thrust nozzle of which the ratio of exit to throat width (0.541 in.) is 1.8. The RNG model is applied to calculate the turbulence by loading the standard coefficients. The results agreed very well with the experiments in the view of the shock structure and the pressure distribution at the various pressure ratios between the stagnation and the environmental states. The plume structures are also discussed on the view of the shock-cell structure.

  • PDF

Numerical Analysis of the Kitchen Hood Ventilation System for Marine Environment (선박용 주방후드 환기시스템에 관한 수치해석)

  • Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.96-101
    • /
    • 2015
  • This study regards distributions of flow in the ventilation system used in the kitchen hood in a ship. In this study, for describing the flow in the ventilation system, three-dimensional steady-state turbulence was assumed for the governing equation. When the plume was formed, three gases, CO, CO2, and HCL, in the flow field of the hood were considered as the plume, and it was assumed that the sum of concentrations of the gases was 100%. As a result, it could be confirmed that the plume was smoothly discharged when the flow rate of the supply was ten times lower than that of the exhaust.

Three-Dimensional Computations of Rocket Exhaust Plume (로켓 배기플룸에 관한 3차원 수치해석)

  • Kim Y.-M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.71-76
    • /
    • 1999
  • The base flow regions of a three-body sounding rocket containing multiple exhaust plumes were numerically investigated in three dimensions for a free stream Mach number of 2.7 at flight altitude 18.5 km. The flowfields were calculated using the full compressible Navier-Stokes equations with an one-equation turbulence model of Baldwin-Earth. The present calculations were executed based upon a chemically frozen, single perfect gas model assumption. Due to the symmetry of the three-body rocket of each single nozzle, only one fourth of the computational domain was considered for the analysis. The results indicate that a babe heating effect is not considerable due to the small expansion of the plumes. In the base, however, a low speed recirculating flow dominates the region.

  • PDF

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn C. H.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.65-70
    • /
    • 1999
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.

  • PDF

Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation (IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Kim, J.Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

Simulation of Rothe Micronozzle Using DSMC method SMILE code (DSMC 방법 SMILE 코드를 이용한 Rothe 마이크로 노즐 시뮬레이션)

  • Choi, Young-In;Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.30-33
    • /
    • 2007
  • DSMC method is now widely accepted CFD approach to compute and simulate the nozzle plume in rarefied regimes. In this study, using SMILE(Statistical Modeling in Low-density Environment) code which was developed in ITAM, Russia and coded using DSMC method, the internal flow of the Rothe micronozzle was simulated. Moreover, to show the validity of the SMILE code, the centerline temperatures according to the Reynold's number were compared with the ones obtained by the Rothe's experiment.

  • PDF