• Title/Summary/Keyword: 플러터링 진폭

Search Result 2, Processing Time 0.015 seconds

Study on the Characteristics of the Upper Pad Fluttering in a Large Tilting fad Journal Bearing Using a Steam Turbine (증기터빈용 대형 틸팅패드 저어널베어링의 상부패드 Fluttering 특성 연구)

  • Yang, Seong-Heon;Park, Heui-Joo;Park, Chul-Hyun;Kim, Chae-Sil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1022-1027
    • /
    • 2002
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the upper pad fluttering experimentally, the absolute vibration of the upper pads the relative vibration between bearing and shaft and the circumferential distribution of the film thickness are measured under the different values of supply oil flow rate, shaft speed and bearing load. It can be known that the fluttering mechanism of the upper pads has a tendency of the self-excited vibration from the study of fluttering frequencies and amplitudes with the change of shaft speed. furthermore, it is observed that the incipient upper pad fluttering velocity is increased by the increase of oil supply flow rate and fluttering amplitude of the upper pads is increased by the decrease of the oil flow rate and by the increase of the bearing load.

  • PDF

Study on the Characteristics of the Upper Pad Fluttering in a 6-Pad, LOP Type, Tilting Pad Journal Bearing (LOP형 6-패드 틸팅패드 저널베어링의 상부패드 Fluttering 특성 연구)

  • 양승헌;박희주;박철현;김재실
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.467-473
    • /
    • 2003
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the upper pad fluttering experimentally, the absolute vibration of the upper pads, the relative vibration between bearing and shaft and the circumferential distribution of the film thickness are measured under the different values of supply oil flow rate, shaft speed and bearing load. It can be known that the fluttering mechanism of the upper pads has a tendency of the self-excited vibration from the study of fluttering frequencies and amplitudes with the change of shaft speed. Furthermore, it is observed that the incipient upper pad fluttering velocity is increased by the increase of oil supply flow rate and the fluttering amplitude of the upper pads is increased by the decrease of the ell flow rate and by the increase of the bearing load.