• Title/Summary/Keyword: 플랫 슬래브

Search Result 89, Processing Time 0.019 seconds

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Analytical Study on Punching Shear of Reinforced Concrete Flat Plates (철근콘크리트 플랫 플레이트의 뚫림전단 거동에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2010
  • A finite element model for punching shear of flat plate structures is presented. A parametric study also has been conducted to verification of influence of several parameters in terms of the flexural reinforcement ratio, slab thickness. Reisnner-Mindlin assumptions are adopted to consider of shear deformation. Layered shell element is considered for the material non-linearities. The finite element model of this study was verified comparing with existing experimental results. The model is able to predict the capacity of the flat plate structures. The punching shear of flat plate structures varied depending on the flexural reinforcement ratio, slab thickness.

Analytical Model to Predict Punching Shear Strength of Flat Plate Structures (플랫 플레이트의 뚫림전단 성능에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.211-214
    • /
    • 2010
  • 플랫 플레이트 시스템은 기둥 주위의 국부적인 응력집중 현상으로 인한 뚫림전단 파괴에 대해 취약하다. 따라서 유한요소해석을 통해 이러한 플랫 플레이트 시스템의 뚫림전단 성능을 평가하고자 한다. 슬래브의 전단을 고려하기 위하여 Reissner-Mindlin 가정을 바탕으로 한 등매개변수 감절점 쉘 요소를 적용하였다. 콘크리트의 재료적 비선형 거동을 고려하기 위해 압축거동은 수정압축장 이론을 적용하였으며 인장강성효과 또한 콘크리트 재료모델에 반영하였다. 기존 실험결과와의 비교를 통해 타당성을 검증하고자 하였다. 비교 결과, 약 16%의 오차율을 보였으며 보강비가 낮은 실험체에 비해 보강비가 높은 실험체가 실험결과에 가까운 값을 예측하는 것으로 나타났다.

  • PDF

Analysis of Effects of Reshoring Works on Short and Long Term Deflections of Flat Plates (플랫 플레이트 구조의 장단기 처짐 제어에 대한 동바리 재설치 작업의 효과 분석)

  • Kim, Jae-Yo;Park, Soo-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • RC flat plates may be governed by a serviceability as well as a strength condition, and a construction sequence and its impact on the distributions of gravity loads among slabs tied by shores are decisive factors influencing short and long term behaviors of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, and a reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of loads in a multi-shored flat plate system. In this study, a effect of reshoring works on short and long term deflections of flat plate systems are analyzed. The slab construction loads with various reshoring schemes and slab design and construction conditions are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking and long term effects is applied. From parametric studies, the reshoring works are verified to reduce slab deflections, and the optimized conditions for the reshoring works and slab design and constructions are discussed.

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load II: Measurements and Comparisons (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 II: 계측 및 비교)

  • Hwang, Hyeon-Jong;Hong, Geon-Ho;Park, Hong-Gun;Kim, Yong-Nam;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • In a companion paper, a simplified method for the evaluation of the slab construction load was developed. Unlike existing methods, the proposed method includes the effects of shore stiffness and concrete cracking on the construction load. In the present study, construction loads were measured in actual flat-plate slabs. For verification, the measured shore-forces were compared with the predictions by the proposed method and existing methods. Further, the proposed method was applied to a wall-slab structure, and the prediction results were compared with the measurements. The comparison results showed that the proposed method well predicted the construction loads, furthermore it gave better predictions than the existing methods did.

Safety Evaluation of Void Plywood Slab System with form Work Panel (거푸집 패널이 부착된 중공슬래브의 안전성 평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Park, Tae-Won;Kang, Hyun-Wook;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.185-192
    • /
    • 2021
  • In this study, Full-scale hollow slab Mock-up with VPS(Void Plywood Slab System) was produced. Through Mock-up, the safety of the flat plate hollow slab against short-term sagging and long-term sagging is to be evaluated. The hollow rate of the mock-up specimen to which the hollow core slab was applied was designed to be 24%. When loading through concrete blocks, the most central part of the slab was deflection 8.88mm when loading. However, it shows a safe value compared to the reference value (ln/240=17.93mm) for short-term deflection. As a result of 3 months of measurement of the mock-up experiment, the deflection at the center of the slab increased by 6.792mm from the initial deflection. In addition, it was found that the reference value by the load used suggested by KBC2016 was satisfied.

Experimental Study on Shear Capacity of I-slab System Using Slim Precast Slab Deck (슬림 프리캐스트 슬래브 데크를 사용한 I-슬래브 시스템의 전단 성능에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper presents the shear capacities of hollow slab with plate and octagonal pillar type hollow sphere. Recently, the interest in precast hollow slab system for buildings is growing up according to the demand for high quality control and the increase in slab thickness. A hollow slab system is widely known as one of the effective slab system which can reduce self-weight of slab. However, hollow slabs are vulnerable to the deterioration in the shear strength due to the decrease of concrete at slab web which resists shear. Especially, in case of precast hollow slabs, it has joint surface between precast concrete slab modules along transverse axis of slab, and shear failure, that is caused by cracks at joints, has to be prevented. Therefore, in this study, shear capacity of the I-slab system is evaluated by 3-points-supported shear test along the longitudinal and transverse axis of slab specimen. Test results showed that I-slab had enough shear strength compared to theoretical shear strength even if it included the joint surfaces.

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.