• Title/Summary/Keyword: 플랫플레이트-기둥 접합부

Search Result 46, Processing Time 0.021 seconds

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Seismic Design and Deformability of Interior flat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 변형능력과 내진설계방법)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.117-122
    • /
    • 2002
  • Flat Plate structures subjected to lateral load are susceptible to the brittle failure, therefore deformability of plate-column connections should be ensured to resist against earthquake. However, according to previous study, existing experiments overestimate the deformability of connections and current design provision do not accurately explains them. In the present study, parametric study using nonlinear finite element analysis was performed. Based on the numerical results, seismic design method considering the deformability of connections was developed.

  • PDF

Influence of Reinforcement Ratio on the Hysteratic Behavior of Rectangle Column-Slab Connection (장방형 기둥-슬래브 접합부의 이력거동에 대한 철근비의 영향)

  • Cho, In-Jung;Choi, Myung-Shin;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.53-56
    • /
    • 2008
  • In this investigation, results of laboratory tests on six reinforce concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio(${\beta}$c=$c_1/c_2$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as 0.33${\sim}$3($c_1/c_2$=1/3, 1/1, 3/1). Other design parameters such as flexural reinforcement ratio of slab and concrete strength was kept constant as ${\rho}$=1.0%, 1.5% and $f){ck}$=40MPa, respectively. Gravity shear load($V_g$) was applied by 30 percents of nominal vertical shear strength(0.3$V_o$) of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, and stiffness degradation were achieved and discussed in accordance with different column aspect ratio.

  • PDF

A Study on Strength of Flat Plate-Column Connections (플랫플레이트-기둥 접합부 강도발현에 관한 연구)

  • Kang Su Min;Lee Do Bum;Kim Ook Jong;Lee Ji Woong;Park Hong Gun;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • A numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases.

  • PDF

The Effect of Anchorage of Reinforcement in Slab-Column Connection (슬래브-기둥 접합부에서 전단보강체에 정창성능에 따른 영향)

  • Choi, Huyn-Ki;Kim, Jun-Seo;Lee, Moon-Sung;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.185-188
    • /
    • 2008
  • Flat plate system has structural weakness such as punching shear. Punching shear resistance can be increase by using a lager column section and effective depth, higer concrete compressive strength, and more flexural reinforcement ratio. But using a shear reinforcement is most economical, enable, workable solution in flat plate. The slab with thickness smaller than 250mm can not perform effectively due to insufficient development length of shear reinforcement in the slab. In case of proposed reinforcements, since the shear reinforcements were installed between the top bar and the bottom bar, shear elements generated slip failure before they reached yield. strength. effect of anchorage strength were effective anchorage length, concrete strength, diameter of shear element and anchorage detail. considering effect of slab thickness and concrete strength, formula of K factor propose in thin flat plate slab. by considering effect of anchorage length and concrete strength, strength of shear reinforcement will be computed correctly in thin flat plate slab.

  • PDF

Seismic Behavior of Column-Slab Connections with Different Column Aspect Ratio (기둥 형상비에 따른 플랫 플레이트 기둥-슬래브 접합부의 거동특성)

  • Chun, Young-Soo;Lee, Hyun-Ho;Lee, Do-Bum;Kim, Jin-Soo;Hur, Moo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.30-33
    • /
    • 2006
  • The purpose of this research is to study the seismic behavior of interior column-slab connections with different column aspect ratio, when subjected to combined gravity and cyclic lateral loading. The control specimen had square column, while the other specimens had rectangular column with aspect ratio of 0.5 and 2.0. From the test results, all of the specimens sustain lateral drifts as high as 4% with no more than a 20% decrease in peak lateral load capacity. And it appears that KBC Code(2005) procedure may be unconservative for connections with different column aspect ratio.

  • PDF

Numerical study on parameters of flat plate-column edge connections (플랫 플레이트-기둥의 외부 접합부의 변수 연구)

  • 안귀용;최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.173-178
    • /
    • 2002
  • Flat plate is susceptible to punching shear failure at the slab-column connection, which may cause catastrophic structural collapse. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, since it is very difficult to experimentally simulate the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable information and data regarding to the strength and ductility of the flat plate-column edge connection. In the present study, numerical studies were performed for edge connections of continuous flat plate. The results were compared with the existing experiments, and the variations of bending moment, drift, effective width around the connection were investigated. Based on tile findings of the numerical studies, the disadvantages of current design methods were discussed.

  • PDF

Numerical Study on Seismic Resistance of Flat Plate-Column Connections (플랫 플레이트-기둥 접합부의 내진성능에 대한 해석연구)

  • 박홍근;최경규;황영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.891-896
    • /
    • 2002
  • Flat plate is susceptible to punching shear failure at the slab-column connection, which may cause catastrophic structural collapse. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, since it is very difficult to experimentally simulate the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable information and data regarding to the strength and ductility of the flat plate-column connection. In the present study, numerical studies were performed for interior connections of continuous flat plate. The results were compared with the existing experiments, and the variations of bending moment, shear, torsional moment around the connection were investigated. Based on the findings of the numerical studies, the disadvantages of current design methods were discussed.

  • PDF

Improvement of Shear Performance for High Ductile Fiber-Reinforced Mortar Slab-Column Connection in Flat Plate Structural System (고인성 복합섬유 모르타르를 이용한 플랫 플레이트 구조 슬래브-기둥 접합부의 전단성능 개선)

  • Ha Gee Joo;Kim Yun Yong;Shin Jong Hak;Yang Seung Hyeok;Hong Kun Ho;Kim Joung Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • Recently the construction of high-rise reinforced concrete building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new structural system is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is with the economy and flexibility, flat plate slab system in high-rise reinforced concrete building. In this research, it was focused in the improvement of shear performance in the flat plate system using high ductile fiber reinforced mortar. It was evaluated the shear performance in the critical region of slab-column connection. The flat plate system, designed by the high performance and safety, was developed as a new technique in the application of high-rise R/C building.

  • PDF