• 제목/요약/키워드: 플래쉬탱크

검색결과 2건 처리시간 0.014초

가스인젝션을 적용한 이산화탄소 열펌프의 난방성능에 관한 실험적 연구 (Experimental Study on the Heating Performance of a $CO_2$ Heat Pump with Gas Injeciton)

  • 백창현;이응찬;강훈;김용찬;조성욱
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.358-363
    • /
    • 2007
  • In this study, experimental study on the heating performance of a $CO_2$ heat pump with gas injection was performed varying gas injection ratio and outdoor temperature to improve the heating performance of $CO_2$ heat pump. The twin rotary compressor having volume ratio of 0.7 was adopted in the $CO_2$ heat pump. From the test results, the heating capacity and COP were increased and the compressor discharge temperature was decreased with the increase of injection ratio. At the outdoor temperature of $-8^{\circ}C$, the heating capacity and COP with the injection were increased by 45% and 24%, respectively, compared with non-injection condition.

  • PDF

120℃ 스팀 생성을 위한 100 kW급 히트펌프의 실험적 연구 (Experimental Study on Heating Performance Characteristic of 100 kW Heat Pump to Generate ℃ Steam)

  • 왕은석;나선익;이길봉;백영진;이영수;이범준
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.100-106
    • /
    • 2018
  • Recently, the development of a heat pump technology to recover process waste heat and to generate steam of $120^{\circ}C$ or higher required for industrial processes, has attracted attention. The research of conventional heat pump utilizing the available energy is used primarily for air conditioning, and the production temperature is about $60^{\circ}C$, so it is difficult to utilize it for industrial use. Therefore, in this study, we developed a steam heat pump (SGHP) which recovers the waste heat of process and generates steam at $120^{\circ}C$. The low-pressure refrigerant R245fa, considered to be an eco-friendly refrigerant, has been selected as the refrigerant for SGHP in this study since its Ozone Depletion Potential (ODP) is zero and the Global Warming Potential (GWP) is relatively low. A flash tank functioning as a phase separator was installed in the rear stage of the condenser, and the saturated water of high temperature was decompressed to generate steam. It was started at the initial temperature of $70^{\circ}C$, and it was confirmed that $120^{\circ}C$ steam was produced after the system stabilized. We have conducted experiments by modifying the system, and ultimately achieved a heating capacity of 101.4 kW and a COP of 3.05.