• Title/Summary/Keyword: 플라즈마 약액 활성화 방법

Search Result 5, Processing Time 0.019 seconds

Photoresist strip 성능 향상을 위한 플라즈마 약액 활성화 방법 연구

  • Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.242-242
    • /
    • 2008
  • 반도체 공정에서 일정한 패턴을 만들기 위하여 Photoresist (PR)를 이용한 식각 공정을 사용하게 된다. 이러한 식각 공정은 반도체 직접도가 증가되면서 더욱 많은 단계의 공정을 요구하게 되었다. 그러나 식각 공정의 증가는 반도체 소자 생산을 위한 더 많은 시간과 비용을 요구하게 된다. 이를 해결하기 위하여 Photoresist를 사용하지 않은 공정으로 공정 단계를 간소화하기 위한 연구를 진행하고 있지만 아직 명확한 대한은 없다. 본 연구에서 는 PR의 strip 시간을 최대한 단축시키고 PR strip 잔여물의 빠른 제거를 위하여 기존 공정에서 사용 중인 strip 약 액을 플라즈마에 의하여 활성화하는 방법으로 PR strip 시간을 최대한 줄이는 방법에 대한 연구를 진행하였으며, 활성화된 strip용액이 더욱 빠른 strip율을 나타내는 것을 확인하였다. 또한 약액 활성화 방법으로 활성화된 strip 용액으로 PR을 일부 제거한 후 PR 표면의 물리적 특성 변화를 분석하여 약액 활성화된 strip 용액으로 인한 PR의 특성을 물리적 방법으로 접근하여 연구를 진행하였다.

  • PDF

The study about accelerating Photoresist strip under plasma (플라즈마 약액 활성화 방법을 이용한 Photoresist strip 가속화 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.113-116
    • /
    • 2008
  • As the integration in semiconductor display develops, semiconductor process becomes multilayer. In order to form several layer patterns, etching process which uses photoresistor (PR) must be performed in multilayer process. Repeated etching processes which take long time and PR residue cause mortal problems in semiconductor. To overcome such problems, we studied about the solution which eliminates PR effectively by using normal dry and wet etching method using plasma activated PR strip solvent in liquid condition. At first, we simulate the device which activates the plasma and make sure whether gas flow in device is uniform or not. Under activated plasma, etching effect is elevated. This improvement reduces etching time as well as display production time of semiconductor process. Generally, increasing etching process increases environmental hazards. Reducing etching process can save the etchant and protect environment as well.

Improvement of PR Stripper Efficient and Change of Surface Hardness for HDI-PR Used by PLVA Method (PLVA 방법을 활용한 PR Stripper의 성능 향상과 HDI-PR 표면의 내력 변화 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.544-548
    • /
    • 2008
  • At the semiconductor industry, Photoresist(PR) strip progress has high cost and time consuming process. Accordingly, many research group have been focused on the shortening of the PR strip progress. But the replacements of newly developed materials rather than normally used strip have accompanied by cost consumption. Therefore, we suggested the Plasma Liquid-Vapor Activation (PLVA) method of general PR strip solution for saving the PR strip time and the high strip rate of PR residue. The PLVA method was very effective for PR strip progress. Also, the ion damaged PR(high dose implanted photoresist: HDI-PR) was almost impossible to strip. However, it was very difficult to characterize the change of chemical composition of HDI-PR between with and without PLVA method. Thus, physical properties of HDI-PR surface with and without PLVA method were measured by using the nano-indenter system.

Activation of Stripper Solution by Plasma and Hardness/Modulus of Elasticity Change of the Surface (Plasma를 이용한 세정액의 활성화와 시료 표면의 탄성계수 및 강도 변화에 대한 연구)

  • Kim, Soo-In;Kim, Hyun-Woo;Noh, Seong-Cheol;Yoon, Duk-Jin;Chang, Hong-Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • In the modem semiconductor industry, the progress that consumes the most capital and labor is cleansing process. Cleansing process is to remove impurities that can affect the operation of the device and deteriorate its function. Especially, Photoresist (PR) progress that etches the device always requires cleansing at the end of the progress. Also, HDI-PR (High-Dose Ion-implanted Photoresist) created from PR progress is difficult to remove. Thus, in modem IC cleansing, many steps of cleansing are used, including dry and wet cleansing. In this paper, we suggested to combine existing dry-cleansing and wet-cleansing, each represented by plasma cleansing and stripper solution, as Plasma Liquid-Vapor Activation (PLVA). This PLVA method enhances the effect of existing cleansing solution, and decreases the amount of solution and time required to strip. We stripped HDI-PR by activated solution and measured surface hardness and Young's modulus by Nano-indenter. Nano-indenter is the equipment that determines the hardness and the modulus of elasticity by indenting nano-sized tip with specific shape into the surface and measuring weight and z-axis displacement. We measured the change of surface hardness and Young's modulus before and after the cleansing. As a result, we found out that the surface hardness of the sample sharply decreased after the cleansing by plasma-activated PR stripper solution. It can be considered that if physical surface-cleansing process is inserted after this, more effective elimination of HDI-PR is possible.